

VTT

Structural design of offshore wind turbines in freezing sea areas

- Understanding how the offshore wind turbine structure behaves in ice interaction is crucial part of design in all freezing sea areas such as the entire Baltic Sea
- For the structural design, the following needs to be understood
 - Assessment of design sea ice conditions (what to expect during the structures lifetime)
 - Ice load methods for different sub-structure types
 - Modelling the structural behaviour under ice loading

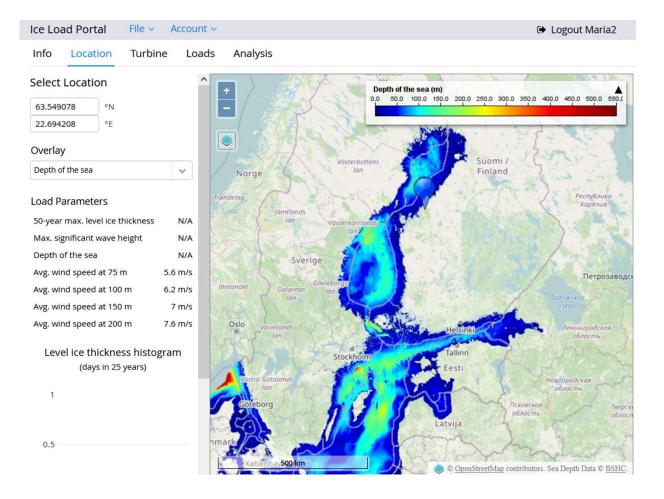
Ice load design portal for offshore wind turbines

VTT

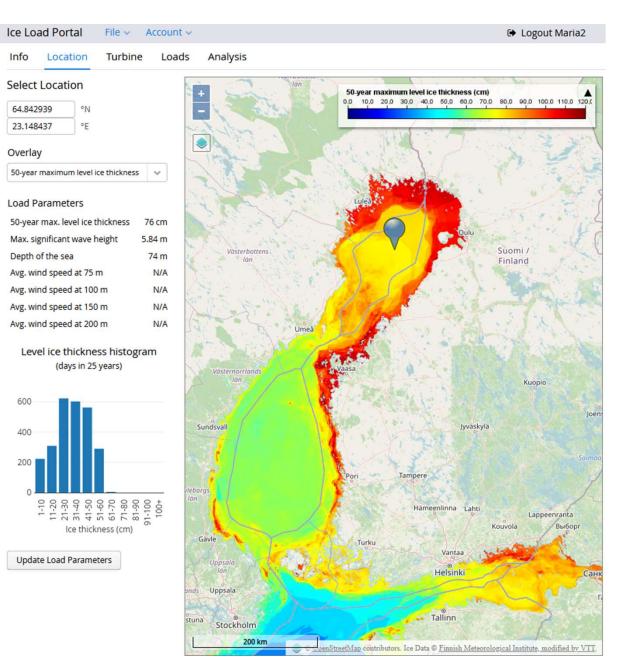
©Jaakko Heinoner

- Web user interface
- Aim to simplify the preliminary design of wind turbine / wind park
- All essential data and models are integrated within a single portal tool
- Site-specific environmental conditions (GIS data)
- Structures
- Loads
- Rapid analysis: you'll get the results within couple of minutes
- Post-processing of results: the design criteria easily available
- Main challenge: Sea ice loads on support structures
- Focus area: Baltic sea, but can be later expanded to other sea areas
- Only license-free softwares are applied

Ref.: J. Heinonen, M. Tikanmäki, J. Kurkela, P. Klinge, T. Hekkala, J. Koskela, A. Montonen, P. Eriksson:


Ice load design portal for sub-structures in offshore wind turbines in ice-covered sea areas. The 28th International Offshore and Polar Engineering Conference (ISOPE)

Ice load portal speeds up the early-phase design


- All the data and models integrated into the same tool
- Speeds up the early design process
- Provides reliable input data for investment calculations
- Data of environmental conditions, structural models and loads can be further analyzed in other tools and applications when doing the final design
- Can be used as a development environment

Environmental parameters

- Sea ice parameters
- Significant wave heights
- Depth of the sea
- Seabed substrates
- Wind speeds

Sea ice design parameters

 Based on Finnish Meteorological Institute's digital and digitized ice charts from 1980/81-2021/22

VTT

- Site-spesific design parameters for offshore wind turbine design calculated from the ice charts
 - 50-year maximum ice thickness
 - Ice thickness histogram
 - lce type
 - Degree of ridging
- Unique database for design

Turbine and it's parameters can be adjusted

In the ice load design portal, different turbines can be chosen and the parameters related to it can be modified

Ice Load Portal File - Account	nt 🗸			Logout Maria2
Info Location Turbine Loa	ads Analysi	5		
Power Foundation Substruct	ture Tower			
Wind turbine class (IEC 61400-1)	Class 1A			
Power	5.0	MW	~	
V _{ref}	50.0	m/s		
V _{ave}	10.0	m/s		
I ₁₅	0.18		-	
A	2.0			
Reference Values Rotor diameter				
Hub height	129 m			
Hub mass	104 m 273.5 ton			
Radius of the monopile	5.25 m			
Bottom radius of the tower	5.09 m			
Top radius of the tower	3.05 m			
Shell thickness of the monopile	78 mm			
Shell thickness at the bottom of the tower	73 mm			

Several load models exists and can be combined in the portal

Ice loads

Level ice

- ISO19906 intermittent crushing
- IEC 61400-3 sinusoidal loading
- VTT Cone Model
- Sodhi model
- Määttänen-Blenkarn model

Ice ridges

- Combined local vs. global load model
- Global failure (Croasdale's model)
- Local (Dolgopolov's model)

15/03/2024 VTT – beyond the obvious

Wind loads

IEC 61400-1 wind gust

IEC 61400-1 turbulence

Tower load

Wave loads

Morison's load model

Nonlinear irregular wave load

At the end, structural performance can be analysed

- After all the details are chosen, the structural performance can be analysed
- The portal can be used as a development environment
- Other load models can be added according to the needs

Ice Lo	ad Portal	File 🗸 🛛 A	ccount 🗸			
Info	Location	Turbine	Loads	Analysis		
Subst	ructure: Moi	nopile + Ice	cone			
Ice load	Ice load			Level ice - VTT Cone model		
Wind lo	oad		EC	DG	~	
Wave lo	oad		N	0	*	
∀ Sho	w Advanced Op	tions				
Ö Sir	nulate					

Conclusions

- Ice load design portal speeds up the early development phase of offshore wind turbines by collecting all the data to same place
- It can be used as a development environment
- Historical ice charts were utilized to calculate sitespecific design ice parameters
- Ice parameters are included in the ice load design portal together with other environmental parameters, structural models, load models, and analysis tool

beyond the obvious

Maria Tikanmäki maria.tikanmaki@vtt.fi Jaakko Heinonen jaakko.heinonen@vtt.fi www.vtt.fi