

Exploring Cold-Climate Wind-Energy Modelling and Ice-Mapping with the New Copernicus Regional Reanalysis for Europe (CERRA) Dataset

Morten Lybech Thøgersen, mlt@emd.dk [presenter] Marie Cecilie Pedersen, mcp@emd.dk Lasse Svenningsen, ls@emd.dk Thorkild Guldager Sørensen, tgs@emd.dk

Why this study and presentation on CERRA: Copernicus Regional Reanalysis for Europe? (1/2)

KNOWN KNOWNS

- High-Resolution Regional Reanalysis (5.5km)
- Part of the EU Copernicus System (Open and free; thus very cost-efficient to use)
- Developed by SMHI (Meteo-France & MET-Norway as subcontractors)
- Data assimilation used (3D-Var Scheme)
- Data from 1984-04 to 2021-06
- Delivers all parameters needed for ice-losses
- HARMONIE-ALADIN model instead of WRF
- Heights 25m to 500m above ground level

KNOWN UNKNOWNS

- Not-So High-Resolution Regional Reanalysis (5.5km)
- No near real-time updates
- Unknown release schedule for new data? 2023, 2024?
- ERA5 is replaced by ERA6 (2024?)

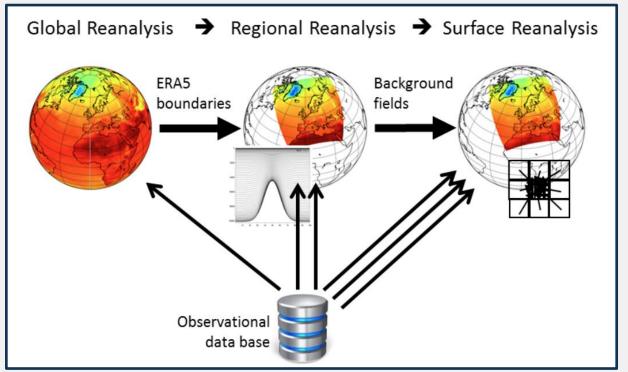
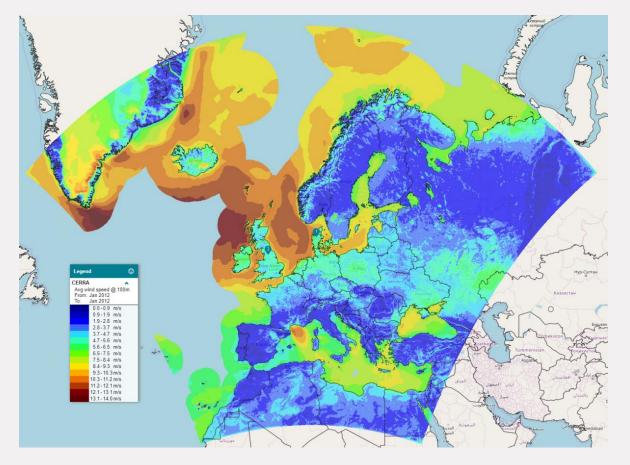



Image Credit: Copernicus

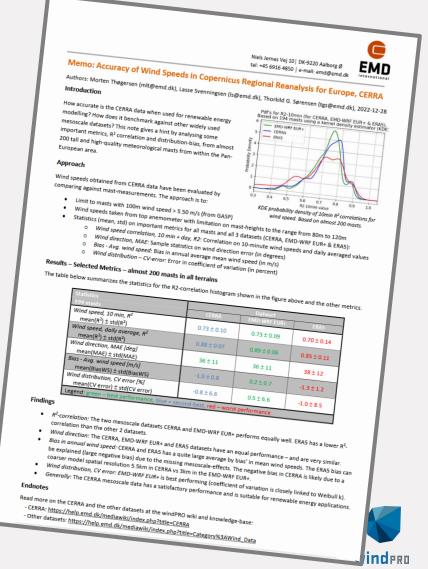
Why this study and presentation on CERRA: Copernicus Regional Reanalysis for Europe? (2/2)

Spatial domain for the CERRA mesoscale data in windPRO and EMD-API, coverage approx. 300km from the coastline)

PARAMETERS FROM DATASET

- Wind Speed and Direction at heights
- TKE at heights
- Pressure at heights
- Temperatures at heights
- Relative humidity
- Cloud Water + Cloud Ice at heights
- Cloud Cover
- Gusts
- Precipitation
- Solar irradiation
- Roughness lengths & orography

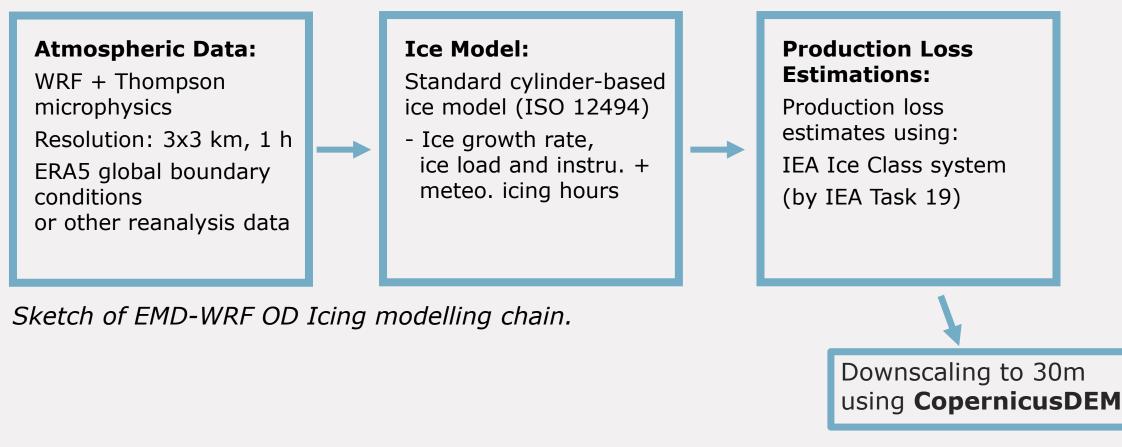
(80 in total in windPRO and EMD-API, more at the Copernicus Data Store)



How is the CERRA data performing for general wind-energy use-cases?

Statistics	Dataset			
194 masts	CERRA	EMD-WRF EUR+	ERA5	
Wind speed, 10 min, R ² mean(R ²) ± std(R ²)	0.73 ± 0.10	0.73±0.09	0.70 ± 0.14	
Wind speed, daily average, R ² mean(R ²) ± std(R ²)	0.88 ± 0.07	0.89±0.06	0.85 ± 0.11	
Wind direction, MAE [deg] mean(MAE) ± std(MAE)	36 ± 11	36 ± 11	38±12	
Bias - Avg. wind speed [m/s] mean(BiasWS) ± std(BiasWS)	-1.0 ± 0.8	0.2±0.7	-1.3±1.2	
Wind distribution, CV error [%] mean(CV error) ± std(CV error)	-0.8 ± 6.6	0.5±6.6	-1.0±8.5	
Legend: green – best performance, blue = second-best, red – worst performance				

KNOWN KNOWNS


- Not used so much only 2% of downloads in windPRO
- Validation one-pager paper freely available at: https://help.emd.dk/mediawiki/index.php/CERRA

The Idea: Use the existing technology with new CERRA data (1/3)

The EMD-WRF On-Demand icing modelling chain relies on industry proven standards.

winder

The Idea: Use the existing technology with new CERRA data (2/3)

EXISTING EMD-WRF ICING

Model Setup

- Model: WRF
- Resolution : 3 km
- Time Span: 1993-present
- Land Use: GlobCover (300m)

Parameterization Schemes

- Microphysics: Ferrier or Thompson
- Surface layer: Janjic
- Planetary boundary layer: Mellor-Yamada-Janjic
- Land-surface model: Noah
- Radiation: GFDL

Global Boundary Data

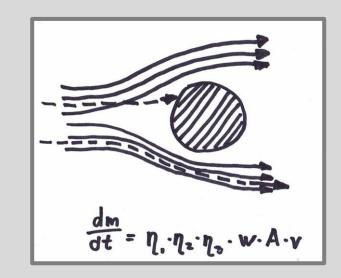
- ERA5 (default setup)
- ERA-Interim
- MERRA2
- CFSR

NEW EMD-CERRA ICING

Model Setup

- Model: HARMONIE-ALADIN
- Resolution : 5.5 km
- Time Span: 1984-01 to 2021-06
- Land Use: ? SURFEX V8.1

Parameterization Schemes


- Microphysics: ? ICE3 mixed phase
- Surface layer: ?
- Planetary boundary layer: ?
- Land-surface model: ?
- Radiation: ?

Boundary Data

- ERA5
- 3D-Var data assimilation
- ? = Model not explicitly stated

EMD ICING MODEL SETUP

- Makkonen / ISO 12494
- In cloud icing cylinder
- Downscaled mesoscale-model data
- Pressure, temp, cloud water, winds
- dm/dt > 10g/h
- Heights: Up to 500m / 1000m
- 10 winters for seasonal analysis

The Idea: Use the existing technology with new CERRA data (3/3)

Results: Stor Rotliden Case (1/4) Some side-by-side model comparisons

IEA ICE-CLASS	DURATION OF METEOROLIGICAL ICING [% OF YEAR]	DURATION OF INSTRUMENTAL ICING [% OF YEAR]	PRODUCTION LOSS [% OF AEP]
5	> 10.0	> 20.0	> 20.0
4	5.0 - 10.0	10.0 - 30.0	10.0 - 25.0
3	3.0 - 5.0	6.0 - 15.0	3.0 - 12.0
2	0.5 - 3.0	1.0 - 9.0	0.5 – 5.0
1	0.0 - 0.5	< 1.5	0.0 - 0.5

IEA Task 19 Ice Classes

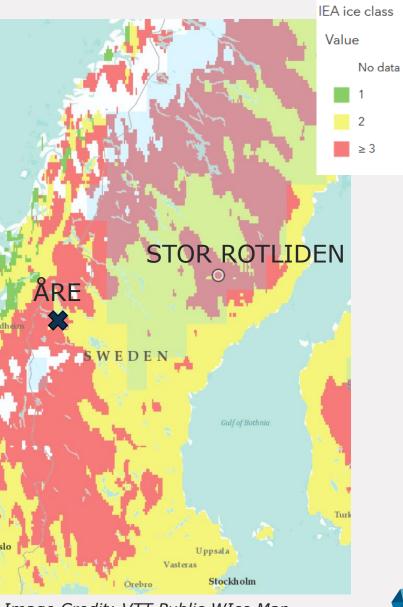
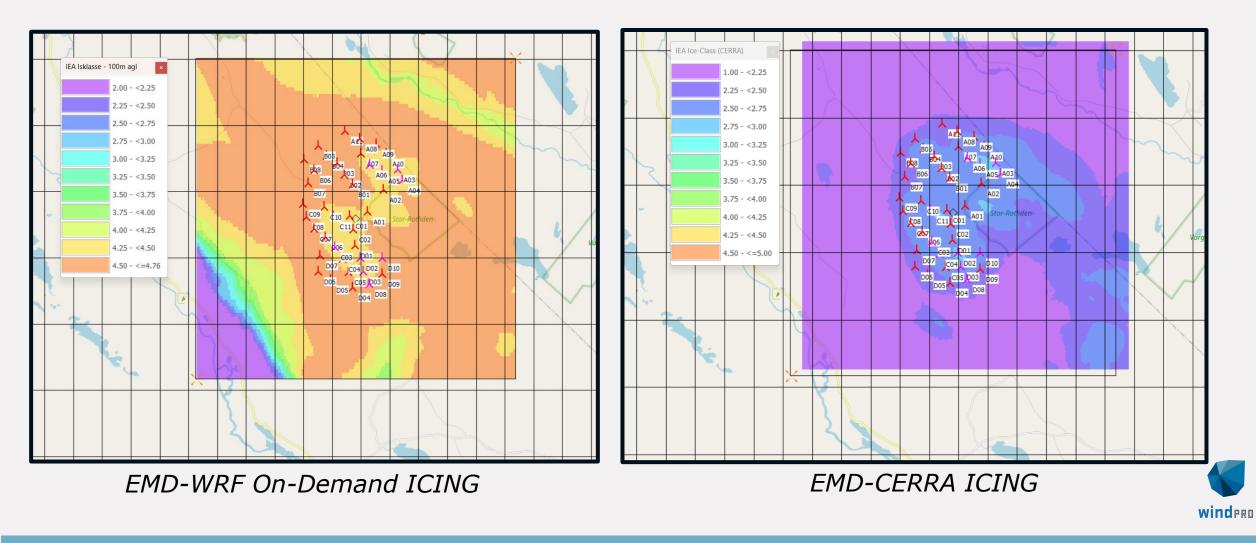
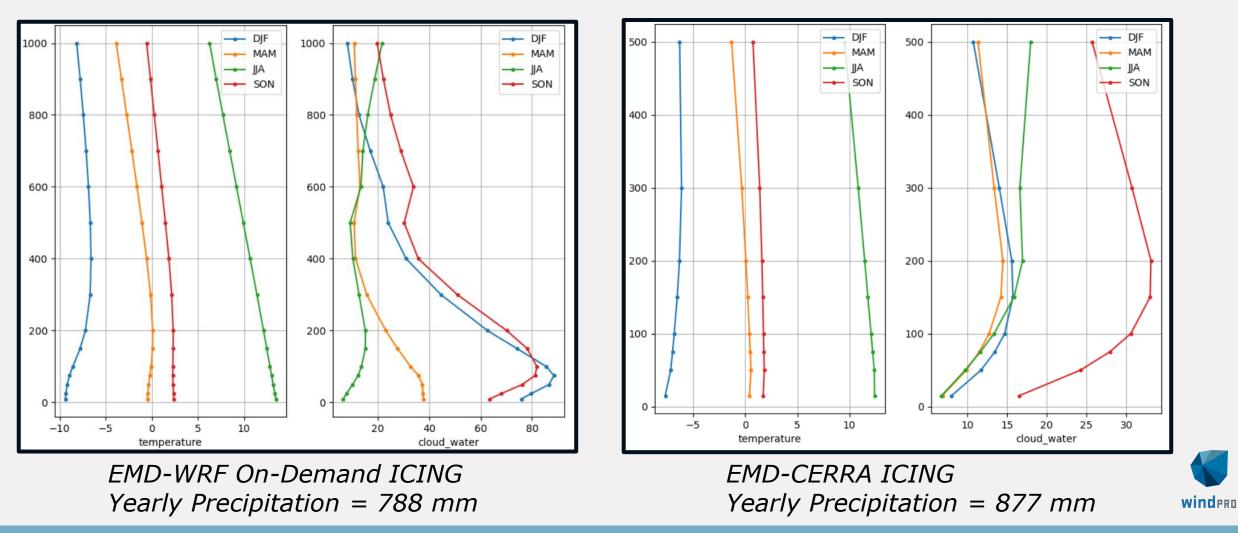
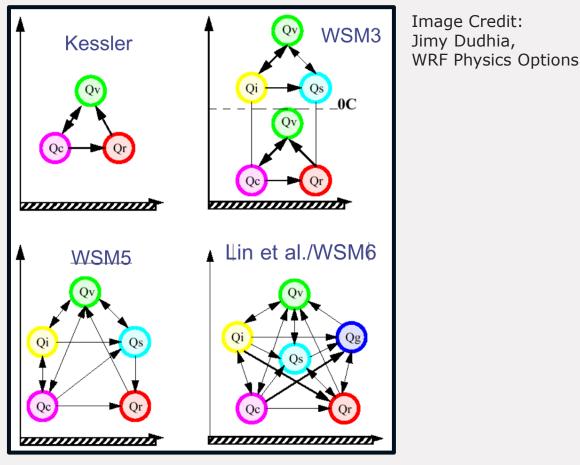
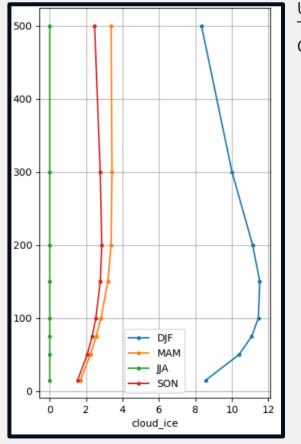



Image Credit: VTT Public WIce Map From https://projectsites.vtt.fi/sites/wiceatlas


Results: Stor Rotliden Case (2/4) Icing Losses – by EMD-WRF On-Demand Icing and EMD-CERRA Icing

Units: Temperature [degC] Cloud-Water [µg/kg]


Results: Stor Rotliden Case (4/4) Vertical Profiles for Four Seasons


2024

Exploring Cold-Climate Wind-Energy Modelling and Ice-Mapping with the CERRA Dataset

Results: Stor Rotliden Case (4/4) Microphysics Model and Cloud Ice

Where has the water gone – and should we include it? (cloud: water, rain, ice, snow, graupel)

EMD-CERRA ICING: Cloud Ice

Units: Temperature [degC] Cloud-Water [µg/kg]

11

Learnings and Outlook

LEARNINGS

- EMD-Icing model is suitable to run with same input from EMD-WRF and CERRA
- Plenty of water present (we think), but surely distributed differently on the hydrometeors; so, a 1:1 setup from EMD-WRF to EMD-CERRA is not possible
- Download from the Copernicus Climate Data Store is pretty "slow"
- Using the right level of "standard tools" including .mesores format
- Could also be a "scaling" issue, 3km vs. 5.5km
- So, maybe not so easy-peasy! Remember the Rumsfeld Matrix and also consider the Unknown Knowns

OUTLOOK

- We will try to re- and fine-tune the model to adapt to water and ice in CERRA
- Our aim is to utilize our big-data and high-performance computing cluster to create a map for in-cloud icing for the CERRA domain

An AI impression on "Learnings and Outlook"

Exploring Cold-Climate Wind-Energy Modelling and Ice-Mapping with the CERRA Dataset

Exploring Cold-Climate Wind-Energy Modelling and Ice-Mapping with the New Copernicus Regional Reanalysis for Europe (CERRA) Dataset

Morten Lybech Thøgersen, mlt@emd.dk

Marie Cecilie Pedersen, mcp@emd.dk Lasse Svenningsen, ls@emd.dk Thorkild Guldager Sørensen, tgs@emd.dk

EMD International A/S

Niels Jernes Vej 10 DK-9220 Aalborg East Denmark Phone: +45 69164850 E-mail: emd@emd.dk

More information and validation paper

https://help.emd.dk/mediawiki/index.php/EMD-WRF On-Demand ICING

1 of 6

[1] I. Baring-Gould, R. Cattin, M. Durstewitz, M. Hulkkonen, A. Krenn, T. Laakso, A. Lacroix, E. Peltola, G. Ronsten, L. Tallhaug and W. T., "13 Wind Energy Projects in Cold Climate," IEA Wind, http://ieawind.org, 2011.

[2] <u>https://help.emd.dk/mediawiki/index.php?title=EMD-WRF_On-Demand_ICING</u>

[3] G. Thompson, P. R. Field, R. M. Rasmussen and W. D. Hall, "Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization," American Meteorological Society, vol. 136, no. Monthly Weather review, pp. 5095-5115, 2008.

[4] G. Thompson, B. E. Nygaard, L. Makkonen and S. Dierer, "Using the Weather Research and Forecasting (WRF) model to predict ground/structural icing," in International Workshop on Atmospheric Icing on Structures (IWAIS), 2009.

[5] ISO, "DS/ISO 12494:2017 Atmospheric icing on structures," Danish Standard Association, København, 2017.

[6] L. Makkonen, "*Models for the Growth of Rime Glaze Icicles and Wet Snow on Structures*," Royal Society, vol. 1776, no. Ice and Snow Accretion on Structures, pp. 2913 - 2939, 2000.

[7] K. Hämäläinen and S. Niemelä, "Production of a Numerical Icing Atlas for Finland," Wind Energy, vol. 20, pp. 171-189, 2017.

[8] https://iea-wind.org/task19/t19icelossmethod/

Acknowledgements

CERRA:

The Copernicus Regional Reanalysis for Europe. Distribution through EMD and windPRO - EMD International A/S, 2022. This study uses CERRA which is being developed through the Copernicus Climate Change Service (C3S). Data processing for CERRA is carried out by SMHI and distribution by ECMWF.

ERA5

ERA5(T) Rectangular Grid and ERA5 Gaussian Grid. Distribution through EMD and windPRO - EMD International A/S, 2020. This dataset uses ERA5 and ERA5(T) which is being developed through the Copernicus Climate Change Service (C3S). Data processing and distribution for ERA5 is carried out by ECMWF.

COPERNICUS DEM

Copernicus DEM GLO-90 (Copernicus WorldDEM[™]-90) or Copernicus DEM GLO-30 (Copernicus WorldDEM[™]-30) unmodified data: © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved. *Copernicus DEM GLO-90 (Copernicus WorldDEM[™]-90) - adapted or modified data:* Produced using Copernicus WorldDEM[™]-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved. *Copernicus DEM GLO-30 (Copernicus WorldDEM[™]-30) - adapted or modified data:* Produced using Copernicus WorldDEM[™]-30) - adapted or modified data: Produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved.

	Knowns	Unknowns
Unknowns	Things we understand but are not aware of.	Things we are neither aware of nor understand.
VNS	Unknown Knowns	Unknown Unknowns
Knowns	Known Knowns Things we are aware of and understand.	Known Unknowns Things we are aware of but don't understand.

