

BorealisWind

Strategies to Optimize ROI of an Ice Protection System

Dylan Baxter P.Eng, March 2024

Who are we?

- Provide aftermarket and OEM Ice
 Protection Systems (IPS) for all turbine makes/models
- 5 wind farms retrofitted in Canada
- 5 winters of validated operation
- 500 MWh energy gain per turbine
- 10% AEP increase on average

Infrared Photo of a Blade Equipped with a **BorealisWind Ice Protection** System

Ambient Wind Temperature	-7 °C
Wind Speed	6 m/s
Blade Internal Temperature	32 °C
Blade External Temperature	11 °C

1	Average	-8.0 °C °C
02		8.3 °C
03		11.7 °C
94		13.6 °C

S

S

S

10.0

EI1

Case Study: Wind Farm in Canada

- Class 4 icing site in Canada
- Typically is -1°C to -17 °C during winter months
- Located on a mountain
- Most severely impacted turbines have IPS
- We will review:
 - The icing conditions
 - The operational envelope
 - The triggering strategy
 - Performance of the IPS

Icing Conditions

Thermodynamic Model - High Level

Assumptions:

- Ice Type: Rime
- Liquid Water Content = 0 g/m^3
- Ambient Temperature = [-20, 0] °C
- Wind = [4, 24] m/s

Design Parameters per Blade:

- Duct Length: 45 m
- Heater Power: 30 kW
- Airflow: 7000 m³/h
- Temperature Limit: Tg 20 °C

Calculate heat transfer inside the Leading-Edge Cavity

- 1. Heat loss to trailing edge
- 2. Convection to the leading edge
- 3. Conduction through leading edge and ice
- 4. Convection to outside air

Operational Envelope

pu	Blade Surface > 3°C
ger	Blade Surface > 0°C
L P	Blade Surface < 0°C

De-icing:

Remove/prevent ice accumulation on an idle turbine

Bl	ade	Wind Speed [m/s]												
Surface Temp.		4	6	8	10	12	14	16	18	20	22	24	>24	
	0													
	-2													
S	-4													
ıre	-6													
ratı	-8													
Jpe	-10													
Ten	-12													
Wind	-14													
	-16													
	-18													
	-20													

Anti-icing:

Remove/prevent ice accumulation on a spinning turbine

Blade Surface Temp.		Wind Speed [m/s]												
		4	6	8	10	12	14	16	18	20	22	24	>24	
	0													
	-2													
S	-4													
lre	-6													
rati	-8													
be	-10													
Ten	-12													
pu	-14													
Ň	-16													
	-18													
	-20													

Operational Envelope

De-icing:

98% of icing hours covered

An	nual	Wind Speed [m/s]											
lc (hc	ing ours)	4	6	8	10	12	14	16	18	20	22	24	>24
	0	22	38	39	29	19	11	5	2	1	0	0	0
	-2	16	25	26	19	13	7	3	2	0	0	0	0
S	-4	11	21	22	16	11	8	2	1	0	0	0	0
ıre	-6	8	18	17	14	8	4	2	1	0	0	-	-
rati	-8	7	13	13	10	7	3	1	1	0	0	0	-
Jpe	-10	5	10	10	7	5	2	1	0	0	0	-	-
Ten	-12	3	7	7	6	4	1	1	0	0	-	-	-
nd	-14	2	4	5	4	2	1	0	0	0	0	0	-
Wi	-16	1	3	3	2	1	1	0	0	-	-	-	-
	-18	1	2	2	1	1	0	0	0	0	-	-	-
	-20	1	2	3	2	1	1	0	0	-	-	-	-

Anti-icing:

77% of icing hours covered

An	Annual Wind Speed [m/s]										-	-	
lcing (hours)		4	6	8	10	12	14	16	18	20	22	24	>24
	0	22	38	39	29	19	11	5	2	1	0	0	0
	-2	16	25	26	19	13	7	3	2	0	0	0	0
S S	-4	11	21	22	16	11	8	2	1	0	0	0	0
nre	-6	8	18	17	14	8	4	2	1	0	0	-	-
rati	-8	7	13	13	10	7	3	1	1	0	0	0	-
npe	-10	5	10	10	7	5	2	1	0	0	0	-	-
Ten	-12	3	7	7	6	4	1	1	0	0	-	-	-
ind	-14	2	4	5	4	2	1	0	0	0	0	0	-
Š	-16	1	3	3	2	1	1	0	0	-	-	-	-
	-18	1	2	2	1	1	0	0	0	0	-	-	-
	-20	1	2	3	2	1	1	0	0	-	-	-	-

Ice Detection Methods in Timeline

ר)
е
-

Control 1: Operational Envelope

Control 2: Domino Effect

Important for Low Wind Events!

- IPS are most effective during low wind
- But running an IPS can be expensive if sitewide production is below 0 MWh
- It is important to consider which turbines should be heated first:
 - Which turbine is most likely to recover first?
 - Which turbine will produce the most power after ice is shed?
 - Once the most likely turbine to succeed is de-iced, power the IPS of the next most likely to succeed
 - Repeat the process until all turbines have recovered

Create a priority list of IPS equipped turbines

Control 3: Self-Organizing Priority

Topography is similar to case-study

Control 3: Self-Organizing Priority

750m

758m

686m

Topography is similar to case-study

Control 3: Self-Organizing Priority

Create a static list considering:

- Constants elevation, rated power
- History past turbine performance

Update the list considering:

- Turbine signals maintenance codes
- Environment wind direction, speed

Constantly monitor the changing conditions and adjust the Priority List

Obs Between: 01 Sep 2021 12:15 AM - 30 Apr 2022 11:45 PM America/Montreal

ref: Iowa Environmental Mesonet

Control X: Other Conditions to Consider

Forecasted weather conditions

- Its important to consider if the near and distant forecasted conditions are improving or worsening when deciding to heat or not to heat
- Inform whether to follow or ignore the typical "low site production" protocols

Price of Power

 When power prices surge or fall it could present an important opportunity to recovered lost energy production

Case Study: IPS Performance

Bold shows icing losses for turbines with IPS

Dotted shows icing losses for control turbines

• Turbine with IPS is dotted when IPS is not available

This winter as of Jan 2024:

- 96% Availability
- \$90,600 CAD / 61,500€ recovered from two turbines with IPS

Data analyzed and graphed by Icetek (icetek.ca)

-FabricAir

Borealis Wind Ice Protection System

For More Information:

www.borealiswind.com dba@fabricair.com Booth 9 at Winterwind

