Performance envelopes of blade heating systems

IEA Wind TCP Task 54 Cold Climate Wind Power

Franziska Gerber, Meteotest Daniela Roeper, FabricAir Patrice Roberge, Icetek André Bégin-Drolet, Université Laval Claas Rittinghaus, Energiewerkstatt Winterwind 2024 18.03.2024

Technology Collaboration Programme

Technology Collaboration Programme

So far adopted concepts in the industry

One general distinction can be made with respect to existing concepts:

 Economically driven definitions such as "production retention" and "Ice Production Ratio" related to the produced energy
➢Already available with the IEA Wind TCP Task 19

"Performance Warranty Guidelines for Wind Turbines in Icing Climates" [3]

 Meteorologically/technically driven definitions such as functions of temperature, wind speed etc. related to a systems performance/efficiency

The subtask and workshop are focused on the latter concepts.

Subtask organization

- WP1 Terminology and definitions
- WP2 Exemplary data of icing events
- WP3 Modelling of IPS performance
- WP4 Recommendations on field validation of IPS performance
- WP5 Collaboration with wind tunnel subtask
- WP6 Dissemination

We should call a spade a spade

Mentimeter poll - What name would you prefer as standard term?

WP1 – Terminology and definitions

- *Performance envelope* as term for the system-, control-, site and event-specific range where icing can be effectively avoided by the heating system
- Operational envelope as defined in the T19 Performance Warranty Guidelines referring to the range agreed upon between manufacturer and operator for applicability of the warranty
- A glossary with these and other definitions will be part of the planned publications

Biossary	
Ice Protection System (IPS)	A wind turbine IPS is defined as a combination of different sub-systems depending on the make and model of IPS. At the core is the ice protection technology used to prevent or mitigate ice build-up on a wind turbine rotor, in most cases a blade heating system. Furthermore an ice detection system used for IPS control and other electro- mechanical equipment and auxiliary systems ensuring a safe operation in icing conditions.
Blade Heating System	Equipment to heat specific sections of a wind turbine's rotor blades in order to prevent ice accretion or remove accreted ice.
Hot Air Heating	Blade heating system based on circulation of hot air along specific sections within the blade's cavity.
Electro Thermal Heating	Blade heating system based on electro thermal elements at specific sections of the blade. These can either be embedded within the laminate structure or the blade or added on the outside blade structure by adhesives.
Anti-Icing	Operating mode of an IPS activating the blade heating system during turbine operation to avoid/decrease ice accretion according to pre- defined criteria, such as specific thresholds of meteorological or machine parameters.
De-Icing	Operating mode of an IPS shutting down the turbine to standstill or idling due to ice accretion detected according to pre-defined criteria and activating the blade heating system to melt the accreted ice.
Performance Envelope	Parameter space with respect to temperature, wind speed and LWC for which the blade heating system can operate effectively. The parameter space and criteria for effectiveness differ depending on the operating mode (anti-icing or de-icing). For anti-icing effectiveness can be equited to the turbine staying in production mode. For de-icing effectiveness can be equated to the complete removal of Ice in a given time or number of heating cycles.
Liquid Water Content (LWC)	LWC is the measure of the mass of water in a specified amount of dry air. It is typically measured per volume of air (g/m ³).

WP2 – Icing loss – different sites / different turbine types

WP2 – Exemplary icing events

Mentimeter poll – Are you willing to share respective anonymized icing data?

WP2 – Icing event data base

- Public database for datasets of icing events
- Consisting of voluntarily shared time series data of turbines or measurement equipment
- Extent of details on origin and location of data or level of anonymization set by contributor
- Exemplary data shall compile and showcase the differences in icing characteristics for different regions/locations as well as during the progression of single icing events
 - > More details during the workshop...

8

WP3 – Potential performance envelope

LWC = 0 g/m^3 15 0 0 -· 10 -5 -5 Ambient temperature [°C] Blade temperature [°C] - 5 Temperature [°C] -10 -10 -0 -15 -15 -5 -20 Ts=0, lwc=0 -20 Ts=5, lwc=0 -10 -25 Ts=0, lwc=0.25 Ts=5, lwc=0.25 -25 -15 -30 15 20 25 5 10 5 10 15 20 25 0 Wind Speed [m/s] Wind Speed [m/s]

WP3 – Performance envelope model code

- Parametrization with respect to
 - Blade dimensions
 - Heating system characteristics
 - Ambient conditions
- Can be used to
 - Assess a system's suitability for conditions at a specific site
 - Evaluation/control of a system in operation
 - Evaluation/validation of a system's performance under specific conditions
 - More details during the workshop...

WP4 – Field validation

 Deduction of a methodology to infer performance envelope from IR imaging of stationary turbine in dry (LWC = 0) conditions

-4.4 --5.6 --6.9 --0.1 --0.4 --10.6 --11.9 -

- Transfer functions to be developed and validated
 - From IR measurements to system-specific heat transfer along blade
 - From results of stationary turbine in dry conditions to operational turbine in LWC > 0 conditions

0

5

10

Wind Speed [m/s]

15

20

25

WP4 – Key take-aways/questions from the group discussions

- Wide-spread unease about the uncertainties of the proposed method
 - But also the comment "Better than nothing we have to start somewhere?!"
 - Thorough validation and evaluation of the uncertainties of a future method will be key to its acceptance
 - Transparency about used simplifications and resulting limitations

> More details on the work in progress during the workshop...

Workshop agenda

• 14:00 - 14:20

• 14:20 – 14:55

• 14:55 – 15:25

• 15:25 - 15:40

• 15:40 – 15:55

• 15:55 - 16:20

• 16:20 - 16:50

• 16:50 - 17:00

- Welcome and introduction
 - Presentations WP2 & 3

Group discussion

- How could you make use of the presented input/tools in your field of work?
- What is lacking? What should be changed/improved?
- Coffee Break
 - Presentation WP4
 - Group discussions
 - How could you make use of the presented input/tools in your field of work?
 - What is lacking? What should be changed/improved?
 - Panel discussion of results
- Closing remarks and outlook

Outlook

<u>WP2 – Icing event database</u>

- Call for contributions until end of June 2024
- Official publication under IEA Wind umbrella until end of 2024

WP3 – Model code for performance envelope simulation

- Iterative improvement of code against field data
- Official publication under IEA Wind umbrella until end of 2024

WP4 – Field validation methodology

- Further specification of detailed methodology
- Compilation of requirements for further research on validation of methodology
- Continuation in potential next term of T54

WP2 – Icing event data base

The call for contributions has been sent out to last year's participants and will be sent out to you after this workshop!

Please contribute!

IEA Wind TCP Task 54

Cold Climate Wind Power

11. March 2024

Task 54 icing event database

Call for contributions

1 General situation

The IEA Wind TCP Task 54¹ deals with "Cold Climate Wind Power". Worldwide, most of the major challenges faced by wind turbines in cold climate are related to the king of rotor blades. In fact, rotor cling can lead to safety risks, production losses and turbine lifetime reduction.

Turbines can be equipped with lce Protection Systems (IPS), such as rotor blade heating systems, in order to mitigate icing inpacts. The efficiency of such systems is strongly dependent on the meteorological conditions that determine ice accretion and ice ablation, i.e. on the "icing conditions". Currently, none of the state-of-the-art blade heating systems is able to prevent icing in all conditions. They all have a limited" performance envelope".

The definition, interpretation and application of this performance envelope is key to many stages during development and operation of any wind turbine/farm incorporating blade heating systems as a cold climate site. From site assessment through operational control to forecasting electricity production, the performance envelope influences equipment choice, control strategies and the residual profit from the sale of the generated electricity and the purchase of balancing capacity. Task 54 thus strives to advance the knowledge base in these aspects and to provide tools for improving the aforementioned processes.

The first step is choosing a suitable blade heating system and afterwards operating it with optimal settings for the site at hand. This implies knowledge about the typical characteristics of local icing events.

The major challenge in this respect is the large variability and diversity of lcing events, in terms of ice type (from glaze to rime), icing intensity (mass and thickness of the ice) and temporal evolution (duration, growth rates, melting phases). Icing conditions can vary greatly between different regions of the world, but also between different events at the same site, or even in the course of a single icing event.

In this context, the **Task 54 icing event database** aims at giving concrete insights about the large diversity of lcing events by gathering respective data from different parts of the world. The temporal evolution of single events shall be accessible via time series data. The goal is to focus on the icing events themselves rather than on turbine behaviour during icing.

1 https://iea-wind.org/task54/

Performance envelopes of blade heating systems

IEA Wind TCP Task 54 Cold Climate Wind Power

Thank you for your participation!

Winterwind 2024

18.03.2024

Technology Collaboration Programme

References

- [1] Gilles Boesch (Winterwind 2021), ENERCON Rotor Blade Heating System fleet performance assessment https://windren.se/WW2021/05_2_27_Boesch_Assessment_of_ENERCON_blade_heating_performance_in_various_conditions_Public_v2.pdf
- [2] Dominic Bolduc et al. (Winterwind 2022), *Joint Panel with Industry and Research: Third-Party Solutions for Ice Mitigation* https://windren.se/WW2022/07_1_34_Bolduc_Third-party_solutions_for_ice_mitigation_Pub_v1.pdf
- [3] Charles Godreau et al. (2020), *IEA Wind TCP Task 19: Performance Warranty Guidelines for Wind Turbines in Icing Climates* https://iea-wind.org/wp-content/uploads/2021/02/Performance-Warranty-Guidelines-for-Wind-Turbines-in-Icing-Climates.v2.pdf

WP2: Performance envelopes of blade heating systems

IEA Wind TCP Task 54 Cold Climate Wind Power

Franziska Gerber, Meteotest André Bégin-Drolet, Université Laval Daniela Roeper, FabricAir Patrice Roberge, Icetek Claas Rittinghaus, Energiewerkstatt Winterwind 2024 18.03.2024

Technology Collaboration Programme

WP2 – Icing event data base

- Where is the database hosted?
- What is available?
- What can the data tell me?
- How can I contribute and share my data?

WP2 – Where is the database hosted?

https://transfer.meteotest.ch/s/moPeLp7EzEpscRD

• 📼	Files - Nextcloud + +				- 0	×
$\leftarrow \rightarrow$	C transfer.meteotest.ch/s/moPeLp7EzEpscRD	₽ < ☆	۲ 🖪] ≡ı	± 🛯 🗊	:
Apps						
°O o	IEAwindTCP_Task54_IcingEventsDB_public			Dow	nload all files	
1	F >				:	
	Name 🔺			Size	Modified	
	MT_Germany			12.9 MB	a month ago	
	UL_Eastern_Canada			20.1 MB	a month ago	
	upload			0 KB	7 days ago	
	WP3 Performance Envelopes Model			0 KB	7 minutes ago	
	IEAwindT54_IcingEventsD8_Register.xlsx			11 KB	an hour ago	
	Task 54 icing event database_call for contributions.pdf			211 KB	25 minutes ago	
	Task 54 icing event database_register_Readme.pdf			175 KB	39 minutes ago	
	TermsOfServices.txt			2 KB	7 days ago	

https://transfer.meteotest.ch/s/moPeLp7EzEpscRD ~ Files - Nextcloud × + - 0 X 🛃 🖸 🚽 🗗 [♀ ☆ 🔲 🗊 🗄 ← C 25 transfer.meteotest.ch/s/moPeLp7EzEpscRD Apps • IEAwindTCP Task54 IcingEventsDB public Download all files -4 Name 🔺 Size Modified Currently MT Germany ... 12.9 MB a month ago two datasets UL_Eastern_Canada 20.1 MB a month ago available Folder to upload upload data WP3 Performance Envelopes Model 0 KB 7 minutes ago Register with 围 IEAwindT54 IcingEventsDB Register.xlsx 11 KB an hour ago metadata Information about Task 54 icing event database_call for contributions.pdf 25 minutes ago 211 KB call and data register Task 54 icing event database register Readme.pdf 39 minutes ago 175 KB Terms of TermsOfServices.txt Services

Technology Collaboration Programme

Terms of Services

♥ Files - Nextcloud × +
← → C ta transfer.meteotest.ch/s/moPeLp7EzEpscRD
Apps
IEAwindTCP_Task54_lcingEventsDB_public
Name A
MT_Germany
UL_Eastern_Canada
upload
WP3 Performance Envelopes Model
IEAwindT54_LcingEventsDB_Register.xlsx
Task 54 icing event database_call for contributions.pdf
Task 54 icing event database_register_Readme.pdf
TermsOfServices.txt

Technology Collaboration Programme

Uploading or using data from/to this data-sharing site, you agree to the following provisions :

1.

This site is intended to be used and must be used for general research purposes only related to icing conditions. Contents of this site are not to be used commercially or resold in any way.

2.

The contents of this site are uploaded voluntarily (and possibly anonymously) by users, and we do not specifically analyze any uploaded data.

All information in this site is therefore provided "AS IS", without warranty or conditions of any kind, express or implied, including, but not limited to, any warranties or conditions of merchantability and fitness for a particular purpose, title, non-infringement, usefulness or accuracy.

We will not be liable, whether in contract, tort (including negligence) or otherwise, with respect to any damage, expense, or other loss you may suffer arising out of information or materials accessed on this website, or any reliance you may place upon such information or materials.

We are not responsible for any errors or omissions, or for the results obtained from the use of any information, content, or materials found on this site.

3.

In uploading any information to this site, you agree that you will upload information that, to the best of your knowledge, is true, accurate and complete.

You acknowledge that all such information will be made publicly available on this site, and you warrant that you have all rights necessary to upload such information and agree to the terms herein.

https://transfer.meteotest.ch/s/moPeLp7EzEpscRD

🕐 🖾 Him - Neetsbaad 🛛 🗙 +		S 🗸 🖸 🔊	iermany - Files - Nextclour × +				o ×
→ Ø (I transfer meteotest.ch/vmcPrilp752ipx30)	G & x D I = 2 I D I						
Acces	(7777)	← →	4 transfer.meteotest.dt/s/moPeLp7EzEpscRD?path=%2FMT_Germany	Ç Q 7	r 🛗 🗗	= ± 🖬 🚺	Error :
Exercise Territor and a lengermore passe		Apps					
Nare -	Size Modifie						、 、
MT.Sermany	12.9		IEAwindTCP_Task54_lcingEventsDB_public		Down	nload all files) (
ULEnter, Canada	20.1 MB a month to						
apixed	0.18 7 days a		MT Germany				
WP3 Performance Envelopes Model	0.18 7 minute ago		- / m_seriary /				- 1
BAvind154.)cingfvents20./Register.stoc	1110 an hour- o						
Task 54 icing event database_call for contributions.pdf	21118 25 minut ago		Name 🔺		Size	Modified	
🗌 🧧 Task 54 icing event database_segister_Readme.pdf	175.18 39 minut ago						_
Terreo Office Vices but	2.521 7 sheys as		event 20211208	•••	1.3 MB	4 months ag	0
			event_20220115	•••	4 MB	4 months age	0
			august 20220118		2 MD	4 months ag	
			even_20220110		2 IVID	4 months age	0
							_
			event_20220127	•••	4.4 MB	13 days ago	
			—				
			MT_Germany_all_events_time_series.pdf	•••	837 KB	23 days ago	
			MT Germany info odf		310 KB	23 days ago	
					510 10	L5 days ago	
			4 folders and 2 files		12.9 MB		
							- I
		Nextcloud – a safe home for all your data					
			Colorent for court				
			Get your own free account				4

https://transfer.meteotest.ch/s/moPeLp7EzEpscRD

Technology Collaboration Programme

event 20220118 time series.csv

2022-01-18

s_010;eologix_A_31_ps_010

12:00:00;3.7;2.2;91.7;0;0.018;0.02;normal;missing;dry;dry;dry;missi ng;dry;missing;missing;missing;dry;dry;missing;dry;missing;dry;miss ing;missing;dry;dry;dry;dry

2022-01-18

12:10:00;3.2;2.2;92.8;0;0.009;0.011;normal;missing;dry;dry;miss ing;dry;missing;missing;dry;dry;dry;missing;dry;missing;dry;mis sing;missing;dry;dry;dry;dry

2022-01-1

12:20:00;3.6;2.2;90.9;0;0.019;0.015;normal;missing;dry;dry;dry;miss ina:dry:missina:missina:missina:dry:dry:missina

by Iea

• Atmospheric conditions during instrumental icing

- Atmospheric conditions during instrumental icing
- Instrumental icing versus ice losses during operation

- Atmospheric conditions during instrumental icing
- Instrumental icing versus ice losses during operation
- Deriving icing type from meteorological conditions during icing events

The curves shift to the left with increasing liquid water content and with decreasing object size.

Figure 1 — Type of accreted ice as a function of wind speed and air temperature

Type of ice	Water content in air							
In-cloud icing								
Glaze	high							
Hard rime	medium							
Soft rime	low							

30

Canada

esearch site

- Atmospheric conditions during instrumental icing
- Instrumental icing versus ice losses during operation
- Deriving icing type from meteorological conditions during icing events

The curves shift to the left with increasing liquid water content and with decreasing object size.

Figure 1 — Type of accreted ice as a function of wind speed and air temperature

esearch site

cture

Canada

- Atmospheric conditions during instrumental icing
- Instrumental icing versus ice losses during operation
- Deriving icing type from meteorological conditions during icing events

The curves shift to the left with increasing liquid water content and with decreasing object size.

Figure 1 — Type of accreted ice as a function of wind speed and air temperature

by lea

Type of ice Water content in air In-cloud icing Glaze high Hard rime medium Soft rime low

Technology Collaboration Programme

Canada

esearch site

Different linkwith writing and editing rights

https://transfer.meteotest.ch/s/ziFAw9wmdNHwDkN

https://transfer.meteotest.ch/s/ziFAw9wmdNHwDkN

Pipe - Handred K					0 4 9 0	0 V 2 0 0 0 1									
upload			IEA	AwindT	⁻ 54_lo	cingEv	entsD	0B_Register.xlsx		Na	ame of folde	r			
	Provider	Region	Location	Name of Datas	Nu of s Altitude ev	mber Total ents Duration	Resolut ion of time								
L	Université Laval Meteotest	Eastern Canad	a	UL_Eastern_Cana MT_Germany	av 500-1000	8 8 days 4 12 day	1 minute 10 minutes	Provider	Region	Location	Name of Dataset	Altitude	Number of events	Total Duration	Resolution of time series
								Université Laval	Eastern Canada	-	UL_Eastern_Canada	500-1000	8	8 days	1 minute
								Meteotest	Germany	-	MT_Germany	400-800	4	12 day	10 minutes

https://transfer.meteotest.ch/s/ziFAw9wmdNHwDkN

Original K + Original K +			0.4.0 0.0 V 2.0 0 (m)								
a Diverse Digital Diverse Diverse Diverse D	1654 (23 Sellery (23 Only (23 16654										
upload the second sec		IEAw	/indT54_IcingEvents	DB_Register	.xlsx						
				Meteorological data relevant for icing	Instrumental icing		Rotor Icina				
				Wind speed [m/s] :Yes Temperature [degC] :Yes LWC [gfm3] : Yes [microns]:- Wind speed [m/s] Wind speed [m/s] :Yes Temperature [degC] :Yes Wind speed [m/s] :Yes Relative Humidity [2] :Yes :Yes	Yes 1. Vebcam pictures showing MCMS sen 2. loe thickness [cm] assessed by eye fro Yes	sor loo: turbine nacelle mr webcam	No Yes 1. Veboam pictures st	Turbine Data No 1. Turbine status 1. Turbine status 2. real_power 3. expected_power nowing			
Meteorological d	ata releva	nt for									
icing			Instrumental icing					Rotor Icing		Turbine Data	
Wind speed	[m/s]	: Yes									
Temperature	[degC]	: Yes									
Relative Humidity	[%]	: Yes								No	
LWC	[g/m3]	: Yes	Yes							1. Turbine status	: No
MVD	[microns	s]:-	1. Webcam pictures showir	ng MCMS sensor	loc : turbine	e nacelle				2. real_power	: No
Solar Radiation	[W/m2]	: Yes	2. Ice thickness [cm] assess	sed by eye from w	ebcam			No		3. expected_power	: No
Wind speed	[m/s]	: Yes									
Temperature	[degC]	: Yes									
Relative Humidity	[%]	: Yes	Yes					Yes		Yes	
LWC	[g/m3]	1-	1. Webcam pictures showing	ng structures on th	ne nacelle			1. Webcam pictur	es showing blades	1. Turbine status	: Yes
MVD	[microns	s]:-	2. Combitech IceMonitor or	n nacelle. Ice mass	s [kg]			2. eologix sensors	on blades [cm]	2. real_power	: Yes
Solar Radiation	[W/m2]	1-	3. eologix sensors on nacell	le. Ice thickness [c	m]			3. Power deviatio	n	3. expected_power	: Yes
1			1					1		1	

https://transfer.meteotest.ch/s/ziFAw9wmdNHwDkN

Decision Control Control Control Contro Contro Contro Control Control Control C	New file Ider scription		IEAwindT54_IcingEventsD	B_Register.xlsx				
						Additional information	Comm	ents
						Pressure Wind direction	Retieved accretio two hour the even available	d by a MCMS (lottek), one of the 8 days with the most loe in the wither 2018-2019, starts two hours before and ends rs after, loe may be present on structures before and after i, be thickness is interpreted from the images only during the day
4	Add	itional information		Comments		I	<u> </u>	indT54_loingEventsDB_MTGermany_info.pdf
1	Pres Win	sure d direction		Retieved by a MCMS (Icetek), one before and ends two hours after, from the images only available du	e of the 8 days with the most ice accretion in the winter 2 ice may be present on structures before and after the ev ring the day	018-2019, starts two hours /ent, ice thickness is interpre	etted	

See IEAwindT54_IcingEventsDB_MTGermany_info.pdf

Performance envelopes of blade heating systems

IEA Wind TCP Task 54 Cold Climate Wind Power

Thank you for your participation!

Winterwind 2024

18.03.2024

Technology Collaboration Programme

WP3: Performance envelopes of blade heating systems

IEA Wind TCP Task 54 Cold Climate Wind Power

Patrice Roberge, Icetek Jennifer Pettersson, Vattenfall Franziska Gerber, Meteotest Daniela Roeper, FabricAir André Bégin-Drolet, Université Laval Claas Rittinghaus, Energiewerkstatt

Winterwind 2024 18.03.2024

Technology Collaboration Programme

WP3 – Blade envelope model

- Why do we need a model?
- What information do I need?
- How does it work?
- How to use it?

WP3 – Why do we need a model?

- Understand the performance of blade heating systems
- Chose appropriate systems on new sites depending on the site-specific conditions
- Design blade heating systems that are adapted to certain meteorological conditions
- Optimize the operation of blade heating systems by triggering in appropriate moments
- Compare different technologies

Parameter

- Blade length
- Power of heating system
- Fraction of the blade heated
- Heating losses
- LWC
- De-icing / Anti-icing
- Blade surface temperature

Blade length

- Defines the area that is heated
- Defines the RPM to keep an optimal TSR

Heating system power

 Power fed to the heating system per blade

Fraction of the blade heated

- Only leading edge or more?
- Runback?
- Increase of heated surface
- Heating fraction = heated length / chord length

Heated length

Chord length

Heating losses

- Heat lost in other surfaces
 - Inside of the blade
 - Pressure side and suction side outside of leading edge
- Hot air or electro-thermal
 - Hot air : experimentally around 20%
 - Electro-thermal : Estimated at 10%, need to be tested
- Need to be considered

- LWC
- De-icing / Anti-icing
 - Defines the RPM
- Blade surface temperature
 - Aim for 0 degrees or for 5 degrees to account for uncertainty

LWC $[g/m^3]$	Event Intensity				
0	No				
0.05	Low				
0.1	Medium				
>0.2	High				

- Simplified model
- Assume that the blade surface is heated to a constant temperature
- Compute the power needed to keep this temperature

- Simplified model
- Simplified as a thermal resistance circuit
- Equivalent to BEM
- Empirical convection equations
- Take into account the effect of LWC

Assumptions

- Uniform heated surface temperature
- Blade dimensions can be scaled linearly
- The blade is ice free (insulating effect vs. increase surface roughness)
- Air properties have to be estimated at a fixed temperature
- Sticking efficiency of the particles is equal to 1

Validation of convective heat transfer equation

- Nordex reached out
- Compared model results to thermal imagery of running turbine
- Excellent coherence with field results for turbine in operation
- Needs to be refined for stopped turbine

Distance from the root of the blade

WP3 – How to use it?

https://transfer.meteotest.ch/s/moPeLp7EzEpscRD

BETA version

- Same cloud as data sharing
- Next version will be available elsewhere Contains:
- Executable file
- Python source

	Name 🔺	Size	Modified
	MT_Germany	 12.9 MB	3 days ago
	UL_Eastern_Canada	 20.1 MB	a month ago
	upload	 0 KB	11 days ago
	WP3 Performance Envelopes Model	 390.2 MB	4 days ago
	IEAwindT54_lcingEventsDB_Register.xlsx	 11 KB	4 days ago
PDF	Task 54 icing event database_call for contributions.pdf	 211 KB	4 days ago
-	Nextcloud – a safe home for all your data		

Technology Collaboration Programme

WP3 – How to use it?

WP3 – What is next?

- Modifications to the model
 - Define spanwize heating zone
 - Add option for individual power and heated fraction for each section
 - Refine model for stopped turbine (de-icing)
 - Better estimation of heating losses of electrothermal systems
- Improve the UI
- Get feedback and find new ways to improve

What do YOU think we should do next?

Performance envelopes of blade heating systems

IEA Wind TCP Task 54 Cold Climate Wind Power

Thank you for your participation!

Winterwind 2024

18.03.2024

Technology Collaboration Programme

WP4: Recommendations on blade heating systems field validation

Patrice Roberge, Icetek Jennifer Pettersson, Vattenfall Franziska Gerber, Meteotest Daniela Roeper, FabricAir André Bégin-Drolet, Université Laval Claas Rittinghaus, Energiewerkstatt Winterwind 2024

18.03.2024

Technology Collaboration Programme

WP4: Recommendation on blade heating system field validation

Objective : Find a simple, reproductible and effective way of validating IPS performance on a fullscale wind turbine

Proposed Method – Introduction

Use thermal imaging along with a tool developed by Task 54, to validate IPS operational envelope.

Note: <u>Does not account</u> for what the <u>loss recovery</u> will be, which is a more complex analysis involving the triggering logic, availability, site icing conditions, etc.

Proposed Method – Step 1

- 1. Take thermal images from the ground with the turbine stopped
- In temperatures below 0°C, and dry conditions (LWC = 0) in at least 3 different combinations of temperature and wind speed (T, WdSpd)

Proposed Method – Step 2

- Use the thermal image to identify to temperatures along the blade
- 2. Task 54 to provide a tool to translates the temperature to the operational envelope <u>in</u> <u>a variety of conditions</u>

Thermal Imagine Requirements – Image Quality

- Thermal image of a stationary blade, from the ground, can be taken with an "uncooled" camera
- Flir E8 (320x240) would produce and image like this, which in not sufficient for temperature collection, there are not enough pixels
- Flir T640 (640x480) would produce an image like this, which has sufficient pixels to collect blade temperatures

Proposed Method – Feedback from 2023 Workshop

Use thermal imaging along with the method developed and validated by Task 54, that uses blade surface temperature to determine the IPS operational envelope.

Feedback:

- There is too much inaccuracy caused by taking measurements of a <u>stopped turbine</u>, to be able to determine the performance of the IPS while the turbine <u>is running</u>.
- Our answer: this margin of error can be quantified through a research project, and will be the same for any IPS, as long as the procedure is followed, but we can also investigate taking photos during turbine operation.

Proposed Method – Option 2

- To take photo of a turbine in operation with blade heating active, it necessary to use a "cooled" camera, like the Flir A8581 (1280 × 1024) to obtain a crisp image
- With an uncooled Flir T640 (640x480) camera the blade tips will be blurred
- A cooled camera (Flir A8581) can provide excellent image quality but can also be relatively expensive

Proposed Method – Option 3

- Position the camera in the frame of reference of the blade
- The camera will be moving, but the blade will be stationary in its view
- Mounted on the hub, a drone, or on a rotating tripod
- Flir T640 (640x480) would produce a usable image, and perhaps even lower resolution would be possible for the hub or drone camera

Proposed Method – Options Comparison

	Option 1: Stopped Turbine from the ground	Option 2: Operational Turbine from the ground	Option 3: Moving camera, blade in stationary frame of view
Resolution required	640 x 480	1280 × 1024	640 x 480
Price of camera	10k€ - 30k€	100k€ - 150k€	20k€ - 50k€
Margin of error	~10%	1-2%	TBD
IPS type	De-icing OR Anti-icing	Anti-icing only	De-icing OR Anti-icing
Set up time	1 hour	1 hour	1-5 hours

Poll

- Option 1: Thermal image of <u>stopped turbine</u>, transferred to operational envelope
- Option 2: Thermal image of <u>operational turbine</u>, transferred to operational envelope
- Option 3: Explore drone or hub mounted cameras to put the operating blade in a stationary frame of view
- Would you use Option 1, 2, 3 or other?
- If other, let's discuss!

Which option would you use to validate an installed IPS?

43

Thank you for participating!