Barealis Wind

Determining Heating Power for Blade Heating System By Dylan Baxter and Daniela Roeper Winterwind 2023

> www.borealiswind.com info@borealiswind.com

Our Goal: Provide a simple retrofit system that can reduce icing loss by at least 70%, is robust, reliable and maintainable

Borealis Ice Protection System

Retrofit Installation

- 3 days to retrofit the Borealis System prior to turbine construction
- 7 days to retrofit the Borealis System into a constructed turbine
- Schedule is designed to have the turbine operational overnight
- All materials are sized so they can be easily passed into the blade
 - Less than 50 cm x 50cm in cross section
 - Less than 70 lbs.

Borealis Ice Protection System:

5 wind farms retrofitted in Canada5 winters of operational validation500 MWh energy gain per turbine8% AEP increase

Berealis Wind

Thermodynamic Model - High Level

- Heat exchanger inside the blade, to heat the leading edge cavity
- Heat loss to the trailing edge
- Conduction through the leading edge
- Conduction through ice
- Convection to outside air
- Assuming rime ice is present, LWC = 0, Tambient = -7C, Wind = 7 m/s

Thermodynamic Model – Part 1

		Heat loss to the trailing edge	leading edge and ice to the air	
Symbol	Description			
T _o	Temperature of the air inside the leading-edge cavity of the blade	R.s1	R.s2	
T_h	Temperature of the internal blade surface on the leading- edge		T.inf	
T _{c.i}	Temperature of the external blade surface in contact with ice	R.cond.f.i R.c	ond.i R.conv.i	
T _{c.b}	Temperature of the external blade surface in contact with the ambient air		T.c.b	
T _{inf}	Ambient air temperature	R.cond.f.b	R.conv.b	
		Convection to the Heat leading edge leadir	loss through the air	

Heat loss through the

Thermodynamic Model – Part 2

		Symbol	Equation	Description
R _s -	٢	<i>Rs</i> 1	$\frac{1}{h_{in} * A_{shear web}}$	Resistance for heat to transfer from the air inside the leading edge to the shear web
		<i>R</i> _{<i>s</i>2}	$\frac{t_{spar}}{k_{fiberglass} * A_{shear web}}$	Resistance for heat to travel through the shear web
RI	٢	R _{in}	$\frac{1}{h_{in} * A_{leading \ edge}}$	Resistance for heat to transfer from the air inside the leading edge cavity to the leading edge airfoil
		R _{cond.f.i}	$\frac{t_{leading\ edge}}{k_{fiberglass}*A_{iced}}$	Resistance for heat to travel through the leading edge airfoil in areas covered in ice
		R _{cond.i}	$\frac{t_{ice}}{k_{ice} * A_{iced}}$	Resistance for heat to travel through the layer of ice
		R _{conv.i}	$\frac{1}{h_{ext} * A_{iced}}$	Resistance for heat to transfer from the external surface of the ice to the ambient air
		R _{cond.f.b}	$\frac{t_{leading\ edge}}{k_{fiberglass}*A_{bare}}$	Resistance for heat to travel through the leading edge airfoil in areas not covered in ice
		R _{conv.b}	$\frac{1}{h_{ext} * A_{bare}}$	Resistance for heat to transfer from the external surface of the leading edge to the ambient air

Thermodynamic Model – Part 3

- This allows us to determine a rate of heat transfer (Q) that can be passed through the blade
 - *Rtotal = 1/(1/Rs + 1/Rl)*
 - Q = (To-Tinf)/Rtotal
 - Calculcated at each 0.5m section
- We are limited in temperature, by the material of the blade
- The critical factor is the airflow, to be able to deliver that heat to the critical area, without exceeding the maximum allowable temperature

Results

The graph shows the calculated and measured power consumption for the heating systems we have installed

Heating Requirements for Larger Blades

• The graph shows the validated heating requirements, and the calculated requirements for larger blades

Power Required vs. Blade Length

Summary

Borealis Ice Protection System: Internal hot air heating system 3-7 day retrofit 8% AEP increase achieved

Heat Requirement by Blade Length: Heating power is determined with a thermo-model Determine heat transfer, Q, through the blade Validated to 55m blades, calculated up to 150m blades

www.borealiswind.com info@borealiswind.com

