

Can we make better use of ice protection systems?

Franziska Gerber, Paul Froidevaux 29.3.2023

Current performance of ice protection systems (IPS)

Current performance of ice protection systems (IPS) blade heating systems (BHSs)

Production losses due to icing

٠

٠

٠

Successful deicing

positive

Blade surface

completely dry

Ambient temperature

Before heating: 1.12.2020 07:00

Restart at: 1.12.2020 11:10

Date: 29.11.2020 15:00

٠

٠

٠

Not successful deicing

Blade icing stays almost

Ambient temperature

 \rightarrow Heat does not reach all

negative

unchanged

areas of blade

Before heating: 29.11.2020 15:00

Restart at: 29.11.2020 19:40

Date: 26.1.2021 09:30

٠

Before heating: 26.1.2021 06:00

eteotes

- Successful deicing
- Ambient temperature
 negative
- Full blade reaches 0 °C

Restart at: 26.1.2021 10:10

Loose several percent of winter production

Heating cycles not always successful

Current performance of BHSs

No information about weather forecast taken into account

Can we make better use of blade heating systems?

BHS: blade heating system

Can we make

better use

systems?

Adaptation of constant BHS settings

- Ice detection and BH triggering
- BH cycle duration
- Heating power
- Use turbine / location specific blade heating envelope

Maybe different for:

Anti-Icing systems with dynamic heating settings

 \rightarrow But: Not always possible due to operational restrictions

Adaptation of BHS settings

Adaptation of BHS settings

Smart Algorithm

19

SOWINDIC – Smart Operation of Wind Turbines under Icing Conditions

Financed: FFG (Austrian Research Promotion Agency) Project partners: Verbund University of Vienna Austrian Institut of Technology

SOPWICO – Smart Operation of Wind Power Plant in Cold Climate

Financed: VGBE partners Data sharing and financing partners: BKW, CGNEE, Vattenfall, Verbund Financing partners: EVN, fortum, SWM, steag Weblink: https://www.vgbe.energy/en/news/sopwicowpp-cold-climate/

Blade heating envelope

Blade heating envelope – data analysis

Power loss during BH events (one turbine / two winter seasons)

Definition of power loss (to be refinded):

 Lost power (with respect to theoretical power) in the first hour after the heating cycle

Blade heating envelope – modelling attempt

(Based on blade surface temperature modelling by Roberge et al., in prep.)

Blade heating envelope – modelling attempt

(Based on blade surface temperature modelling by Roberge et al., in prep.)

Blade heating envelope – modelling attempt

BH: Blade heating

Can we make better use of blade heating systems? • Adaptation of constant BHS settings

• Smart algorithm to find best heating time taking into account weather forecast and knowledge about past performance

Thanks to:

SOWINDIC – Smart Operation of Wind Turbines under Icing Conditions

Financed: FFG (Austrian Research Promotion Agency) Project partners: Verbund

University of Vienna Austrian Institut of Technology SOPWICO – Smart Operation of Wind Power Plant in Cold Climate

Financed: VGBE partners Data sharing and financing partners: BKW, CGNEE, Vattenfall, Verbund Financing partners: EVN, fortum, SWM, steag Weblink: https://www.vgbe.energy/en/news/sopwicowpp-cold-climate/

Questions?

www.meteotest.ch