# Challenges for a smart algorithm controlling wind turbines under icing conditions – Winterwind 2023

Thomas Burchhart, **Simon Kloiber** (VERBUND, AT) Franziska Gerber, Paul Froidevaux (Meteotest, CH) Radu Bot, Michael SedImayer (University of Vienna, AT) Tobias Glück, David Gruber, Georg Fritze (Austrian Institute of Technology, AT) Åre, Sweden 29. March 2023





#### Verbund

# Fact sheet: SOWINDIC



#### Smart operation of Wind Turbines under Icing Conditions

- Funded by the Austrian Climate and Energy Fund
- Project period: 1. April 2021 to 31. March 2024



#### **Project partner**

- Austrian Institute of Technology (AIT) Vision, Automation & Control
- Real-time data processing of complex dynamic systems, control solutions
- University of Vienna Data Science @ Uni Vienna
- Applied mathematics with a focus on optimization (machine learning)
- Meteotest Wind & Ice
- Research on icing in wind power, weather forecasting
- VERBUND Green Power (Consortium leader)
- Operation of wind turbines under icing conditions, research projects about icing









#### **Concept and Goals**



Weather forecast (wind speed, temperature, etc.)

Production prediction via learned power curve (icing vs. no icing)

Performance rotor blade heating system

Electricity prices



Rotor blade heating system



**Data collection**: Heterogeneous real-time data streams collection on central data platform.



**Data processing**: Machine learning as well as physics-inspired heuristic model development.



**Turbine control**: Real-time algorithm deployment on a decentralized edge device.



**Aim**: Reduction of unplanned icing-losses due to a smart rotor blade heating system.

### Q&A: Data collection I



Q1: Are you up for the task? Data is collected in **harsh conditions** and maintaining a high availability is tricky.

A1: Expect the unexpected. Use: UPS, redundant data connections, have spare parts ready, perform summer maintenance ...

Q2: What are we measuring? There is a difference between **meteorological**, **instrumental** and **rotor blade icing**.

A2: Be aware of what you want to measure and select the right instruments.



## Q&A: Data collection II

Q3: What would you do? Measurements of the rotor blade icing are **affected by the operation mode** of the wind turbine.

A3: (Try to) understand the turbine control and sanitize the data.

Q4: Don't forget about the **data integrity**. Synchronizing data from different sources with different protocols and (most of the time) different sampling rates is challenging.

A4: Ask an expert i.e., AIT ;-)



V<sub>Q: Question; A: Answer</sub>

# Q&A: Data processing I



THE Q5: What is the ground truth for icing?

- Turbine  $\rightarrow$  Affected by turbine control. "No" false alarms, just hits?
- Instrumental  $\rightarrow$  Why is the turbine (not) stopping?
- Meteorological  $\rightarrow$  A lot of false alarms.

A5: Within SOWINDIC the **turbine icing** is the ground truth  $\rightarrow$  Goal: Reduction of production losses. Again, (try to) understand what the turbine is doing. Compare the sensor data when the turbine is icing and find "common ground" i.e., correlations.





## Q&A: Data processing II



Q6: What do we train today? There must be **enough high-quality** data when it comes to training a machine learning model. **Icing** is still a **rare** event to train with.

A6: Use as much data as possible and be innovative i.e., use "Cross Validation", "Data Augmentation" for increasing the training/test data or ask Uni Vienna ;-)

Q7: What did you just say? Comparisons/correlation with neighboring turbines may seem tempting but **microclimatic effects** may interfere.

A7: Neighboring turbines can be helpful but use filtering/clustering – maybe weather patterns – to keep the test data sufficient.



## Q&A: Data processing III

*Q8*: What do you prefer? **Heating during operation** (preventive before ice occurs or proactive whenever (first) ice is detected) or when the turbine is **stopped** (reactive)?

A8: Bes case: Model output but often driven by external circumstances (Turbine type, requirements, ...).

*Q9*: Sell, buy or hold? With **less fixed feed-in** tariffs and **more tender** processes taking place the electricity prices are more and more important. *A9*: Include energy prices or an energy market model in the algorithm.

*Q10*: Do you know it all? A key for setting-up a successful model is to understand the deicing process  $\rightarrow$  **Rotor blade heating envelope**. *A10*: Ask Meteotest respectively IEA Wind TCP Task 54 ;-)

*Q11*: Data integrity – Part II: "Real-time" is even more fun. "Biggest" question: What is the algorithm doing when **data is missing**? *A11*: Keep this fact in mind when setting up a model and define fallback scenarios.





### Q&A: Turbine control



Q12: Can we use your computer? For performing a real-time algorithm, a sufficient development environment is necessary.

*A12*: Keep the **operating system adaptive** i.e., docker container. You may need to switch between onpremise or decentralized devices. The advantage of a **decentralized device** is that it increases the "realtime" data availability e.g., when installed within the turbine in the event of mobile network outage the SCADA data is still available.

Q13: What was in the mail today? For SOWINDIC a **decentralized edge device** is used. Spoiler: The delivery time was "madness".

A13: See previous answer and order early ;-)

Q14: Control what you can control. A **direct connection to the SCADA** must be established. This can be challenging since wind turbine OEMs (original equipment manufacturer) are restrictive. *A14*: Cooperate with OEMs and be creative i.e., use already established connections. Highest priority: **Cyber Security**!

*Q15*: Back-up the back-up. What to do when the direct connection to the turbine control is not available? *A15*: Have a back-up ready i.e., use **mail- or SMS-notification** to inform the operator.

#### Q&A: Aim



Q16: What do you have in stock? Wind turbine OEMs don't necessarily provide rotor blade heating systems, especially when it comes to larger turbines. *A16*: Keep demanding heating systems or retrofit turbines.

Q17: Are you allowed to do this? **Local laws** or **legal requirements** can be **very restrictive** when it comes to control the turbine in cold climate.

*A17*: Talk to each other. Use science, expert reports, certificates, **best practice** and be adaptive with the heating strategy. Take the concerns seriously.



### "Solutions" and outlook

#### What you should remember

- Know what you want to measure (meteorological, instrumental or rotor blade icing) and install "the right" measurement equipment i.e., webcams, rotor blade-based systems, meteorological station on the nacelle, ...
  Challenge the manufacturers to explain their SCADA system.
- Demand heating systems from the OEMs.
- Find **best practice** for operating a rotor blade heating system and raise the acceptance.
- Collaborate i.e., SOPWICO Smart Operation of Wind Power Plant in Cold Climate (VGBE). Icing is a rare event and sufficient data is the key.



#### Next steps within SOWINDIC

- Evaluation of the machine learning as well as physics-inspired heuristic model and combine "the best of both worlds" to perform a hybrid model.
- Sensitivity analysis of existing input streams to estimate the most important input one as well as advices regarding additional or missing data sources respectively measurement equipment.
- **Real-time** implementation of the algorithms on the **edge device**.

#### *Q18*: Who was talking?



Simon Kloiber VERBUND Green Power GmbH Am Hof 6a, A-1010 Vienna T: +43(0)664 82 87 756 E-Mail: simon.kloiber@verbund.com

V<sub>Q: Question</sub>