

> Experiences analysing operational wind farms in cold climate

Jennie Molinder, Utku Turkyilmaz

Wind farm constructed in the cold climate -How does it perform under icing conditions?

Wind energy production and wind speed variability

- November 2022 wind index?
 - ► A bad scenario with cold weather coinciding with low winds

Wind energy production and wind speed variability

- November 2022 wind index?
 - A bad scenario with cold weather coinciding with low winds

110

100

80

70

2022 average wind index?

Wind energy production and wind speed & icing variability

- Production index
 - Wind index
 - Icing index

	Mean [%]	Max [%]	Min [%]
Without icing	100	115	89
With icing	96	113	85
Icing	4	10	1

Annual production as percentage of normal production

Framework: How do we analyse operational wind farms in cold climate? Post-construction production assessment (PCPA) based on SCADA data

Methods combined by Kjeller Vindteknikk (KVT):

- IEC Standards
- ► IEA Wind Task19

	IEA Wind T19IceLossMethod		IEC 6	IEC 61400-26-1:2019				
			_					
	1							
2	2001	2009	2011	2014	2016	2019	2023	

Framework: How do we analyse operational wind farms in cold climate? Post-construction production assessment (PCPA) based on SCADA data

Methods combined by Kjeller Vindteknikk (KVT):

- IEC Standards
- ► IEA Wind Task19
- KVT's Mesoscale WRF & IceLoss model
- KVT's PCPA method developed within research project ProdOptimize

Post-construction production assessment (PCPA) based on SCADA data

Gross to net energy yield

Gross to net energy yield

Post-construction production assessment (PCPA) based on SCADA data

- Historical power curves
 - SCADA data filtering

Post-construction production assessment (PCPA) based on SCADA data

- Historical power curves
 - SCADA data filtering
- Categorization of losses

Historical icing loss calculations

- T19IceLossMethod:
 - Operation icing losses

Historical icing loss calculations

- T19IceLossMethod:
 - Operation icing losses
 - Standstill icing losses

Historical icing loss calculations

- T19IceLossMethod:
 - Operation icing losses
 - Standstill icing losses
- SCADA status and detailed alarm logs

Historical icing loss calculations

- T19IceLossMethod:
 - Operation icing losses
 - Standstill icing losses
- SCADA status and detailed alarm logs

Historical icing loss calculations

- T19IceLossMethod:
 - Operation icing losses
 - Standstill icing losses
- SCADA status and detailed alarm logs

SCADA production time series – data filtering

SCADA production time series – data filtering

Down times

Are these down times due to icing or alarm/maintenance or something else?

SCADA production time series – data filtering

Curtailments

Part of Norconsult

Gross to net energy yield – How do we categorize filtered data?

Typical annual production losses	lcing	Availability (Alarms)	Curtailments	Other performance	Missing periods
TOTAL WF	5.0 %	3.0 % to 10.0 %	0.0 % to 2.0 %	0.0 % to 1.0 %	< 0.5 %

Post-construction production assessment (PCPA) - experiences

- KVT experiences with SCADA filtering
 - $\circ~$ Utilize WRF model and IceLoss model
 - Biased SCADA temperature data
 - Periods with problems in SCADA based wind speed
 - Find outlier turbines

Historical (short-term) icing losses from SCADA found, what is next?

Historical (short-term) icing losses from SCADA found, what is next?

Long-term adjustment

KVT IceLoss model

Example:

- Monthly comparison SCADA/KVT IceLoss model
 - 2 years

Monthly Icing hours

Example:

 Yearly comparison SCADA/KVT IceLoss model

Tune the IceLoss model to fit SCADA losses

Introducing stops

Introducing stops

Final long-term icing losses

Data source	Short term annual average	Long term annual average
Standard Iceloss	2.5 %	4.2 %
Iceloss (thresh. 1)	4.4 %	6.5 %
Iceloss (thresh. 2)	3.4 %	5.8 %
SCADA (2 years)	3.9 % (3.1 % during operation)	6.2 %

Final long-term icing losses

Data source	Short term ann dal average	Long term annual average
Standard Iceloss	2.5 %	4.2 %
Iceloss (thresh. 1)	4.4 %	6.5 %
Iceloss (thresh. 2)	3.4 %	5.8 %
SCADA (2 years)	3.9 % (3.1 % during operation)	6.2 %

KJELLER VINDTEKNIKK Part of Norconsult

Final long-term icing losses

Data source	Short term annual average	Long term annual average
Standard Iceloss	2.5 %	4.2 %
Iceloss (thresh. 1)	4.4 %	6.5 %
Iceloss (thresh. 2)	3.4 %	5.8 %
SCADA (2 years)	3.9 % (3.1 % during operation)	6.2 %

Final long-term ice loss estimation

Take-away

- Long-term estimations of icing losses are important
- Detailed alarms/logs is key to categorize icing events correctly
- KVT models are useful tools in the long-term correction as well as in the filtering

Jennie.Molinder@vindteknikk.com www.vindteknikk.com

Thank you!