Sea ice conditions in the Baltic Sea and the impact for offshore wind farm foundations

March 2023 Florian van der Stap

The Baltic Sea

"The Baltic Sea holds an incredible potential for offshore wind in Europe, and could host as much as 93 GW by 2050, up from 2.2 GW today." (WindEurope, 2020)

Presence of sea ice

Ice-structure interaction

(FLI)

- Based on relative rigidity of the structure and the ice speed different types of interaction may develop:
 - Intermittent crushing (ICR)
 - Frequency lock-in
 - Continuous brittle crushing (CBR)

Ice-structure interaction

Intermittent crushing:

Intermittent crushing

Alternative options

- Expensive fabricationLabour-intensive
- Limited water depth

Gravity based structures

Research – Defining a feasibility map

Impact of sea ice

Data on ice thickness is scarce, but data on air temperature is not!

Identified regions

1.	Danish Straits	(DS)
2.	Baltic Proper South	(BPS)
3.	Baltic Proper North	(BPN)
4.	Gulf of Riga	(GOR)
5.	Gulf of Finland	(GOF)
6.	Archipelago Sea	(ARS)
7.	Bothnian Sea South	(BSS)
8.	Bothnian Sea North	(BPN)
9.	Bay of Bothnia	(BOB)

Region	h ₅₀ [m]	C _{R;1} [MPa]	Depth [m]	$\mathbf{v_{wind;50}}$ [m s $^{-1}$]	H _{S;50} [m]	D _{ice} [days per lifetime]
Danish Straits	0.40	0.88	19	45.06	6.17	9.6
Baltic Proper S.	0.45	0.86	65*	43.44	12.43	11.9
Baltic Proper N.	0.50	0.88	65*	43.88	12.96	73.3
Gulf of Riga	0.55	0.94	26	39.19	9.23	197.6
Gulf of Finland	0.95	0.95	37	35.96	6.44	198.0
Archipelago Sea	0.75	0.92	23	40.28	6.55	96.9
Bothnian Sea S.	0.65	0.92	50	40.72	12.53	228.0
Bothnian Sea N.	1.00	0.94	65*	41.07	11.26	299.8
Bay of Bothnia	1.25	0.98	42	37.70	9.75	352.5

HAWC2, VANILLA & Morpheus

HAWC2

- Code for aero-elastic simulations
- Load generation

VANILLA

Phenomenological ice crushing model

MORPHEUS

Holistic wind farm design Foundation optimization

Results – weight increase map

Results – feasibility map

- Exceedance of maximum foundation weight
- Exceedance of can thickness/can weight
- Likely economically infeasible

Conclusions

- Fatigue loads governing for design
- ICR/FLI largely responsible for damage
- Emphasis on accurate ice data

- Monopiles are feasible in DS, BPS, BPN, GOR, ARS
- BSS and GOF feasibility depends on alternative options
- Infeasible in BSN and BOB
- Accurate ice data is extremely valuable!

THANK YOU

Wood Thilsted Partners ^{3th} Floor Tolbodgade 51D, Copenhagen

www.woodthilsted.com