VTT

Case study on vertical variability in icing conditions in Finland

Winterwind 2023 Conference, Åre 28.10.2023 Timo Karlsson, VTT Mika Komppula, Ari Leskinen FMI

24/03/2023 VTT – beyond the obvious

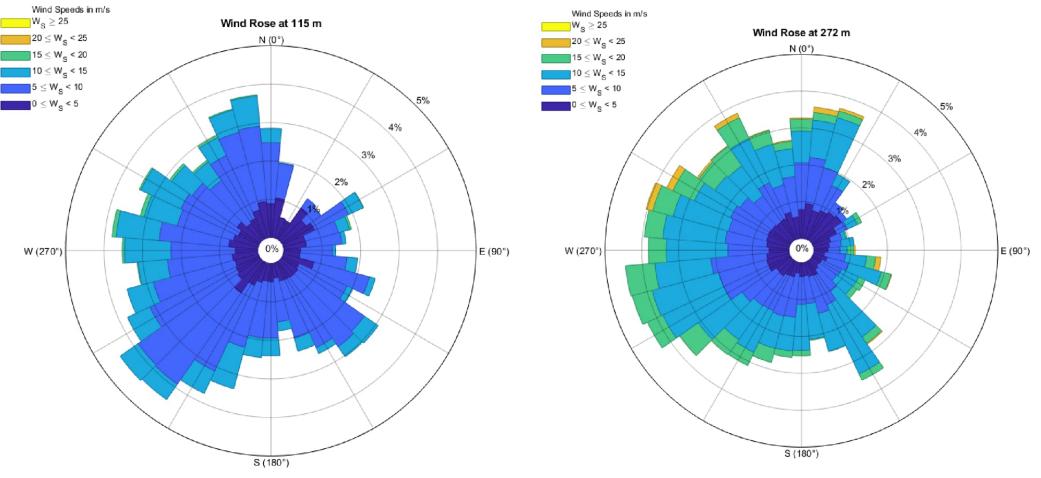
Contents

- Research question
- Instrumentation
- Conditions during active icing
- Icing rate signal
- Hit rate, correlation
- Wind conditions
- Temperature gradient
- Conclusions

Research question

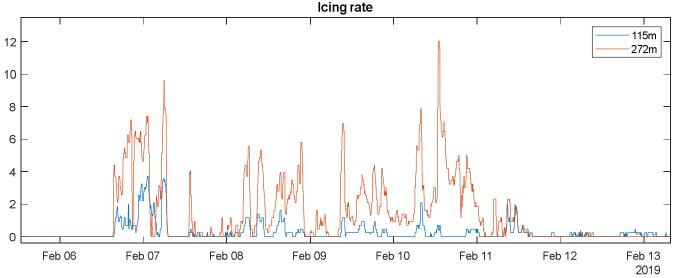
- Core questions:
 - How do icing conditions change when moving from 100 – 150 m turbines to ~250 meter turbines
 - Frequency, intensity etc.

VTT


Data outline

- 318 m mast outside Kuopio, Eastern Finland
- FMI (Finnish Met institute)
- Wind speed, direction, temperature, relative humidity and icing rate (Goodrich 0872F1) at 115m an 272m
- Main focus in icing intensity/icing rate as mm/h

Wind, full dataset



24/03/2023 VTT – beyond the obvious

Icing rate signal

- The alarms are not simultaneous, there are events that are visible in one sensor and not the other
- There is more icing on the higher measurement level and the absolute values of the sensor signal are higher

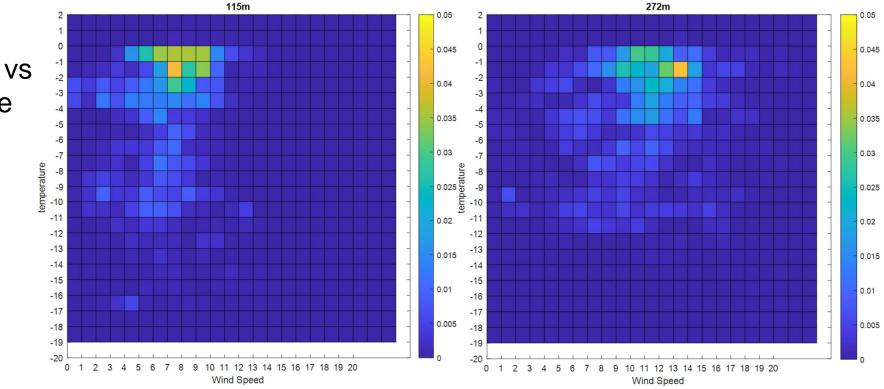
Hit rate

- There is some amount of overlap, but there are significant number of events where only one sensor gives any alarms.
- The total icing time is larger at higher altitude as expected, but not by much.
- Here the definition of icing is icing rate
 0 mm/h

lci				
		115m		TOTAL
		ON	OFF	272 m
272m	ON	6 %	8 %	14%
	OFF	3 %	83 %	
	TOTAL 115 m	9 %		

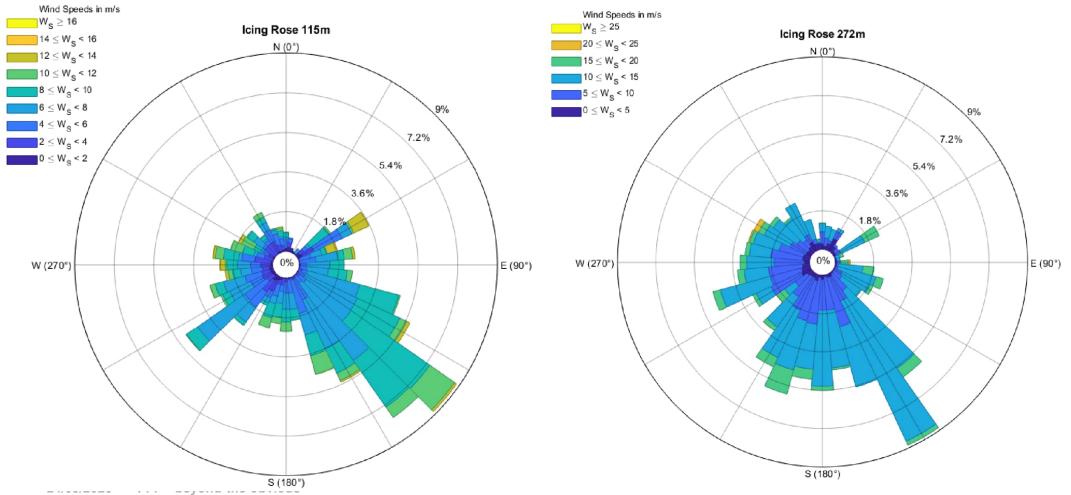
IEA Ice Classification¹

IEA Ice Class	Duration of Meteorological Icing [% of Year]	Duration of Instrumental Icing [% of Year]	Production Loss [% of AEP]
5	>10	>20	>20
4	5-10	10-30	10-25
3	3-5	6-15	3-12
2	0.5-3	1-9	0.5-5
1	0-0.5	<1.5	0-0.5

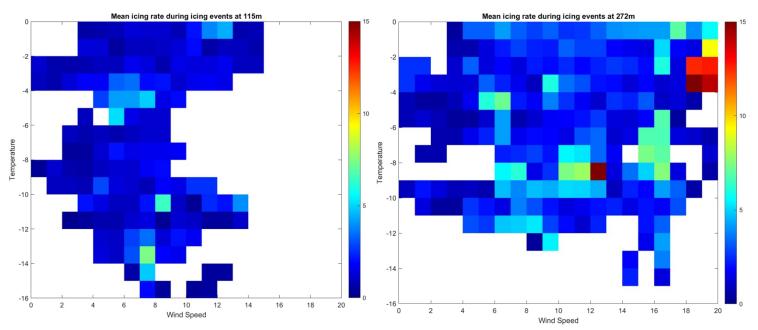

24.3.2023 VTT – beyond the obvious

¹: IEA Wind Recommended Practices for wind energy projects in cold climates edition 2011

Conditions during icing


 Icing event distribution vs temperature and wind speed

24.3.2023 VTT – beyond the obvious


Wind, during icing

Signal strength

- Controlling for wind speed and temperature icing signal values are higher at higher altitude
- Plots during events where both sensors are active

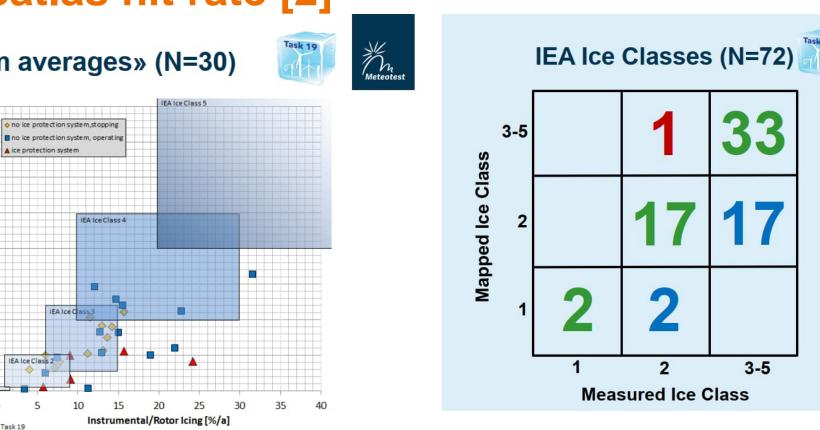
VTT World icing atlas

WIceAtlas (vtt.fi)

- Built using open data, based on weather observations
 - Estimate meteorological icing conditions based on measeured cloud base height.
- Calibrated against observations from wind power plants
- Used as background for consulting projects for site selection and site planning
 - There's a more accurate, higher resolution internal version that VTT use
 - Public version that's quite rough

Meteotes

Task 19


2

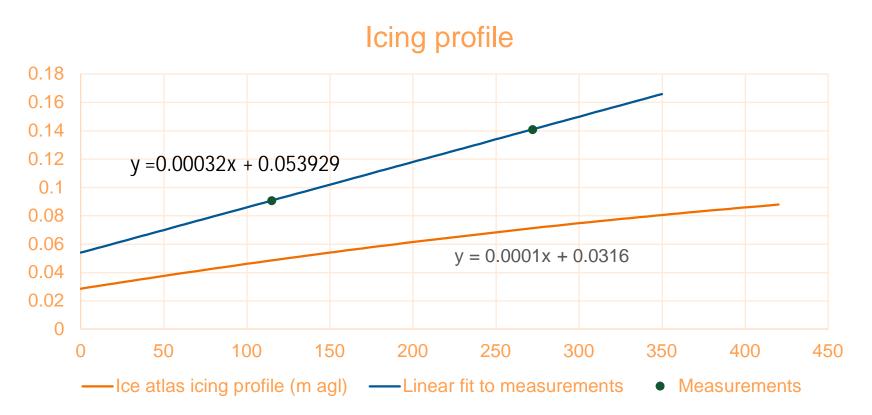
2

Measured Ice Class

3-5

1

Wiceatlas hit rate [2]


«Long term averages» (N=30)

40 35 30 25 [%/a] 20 15 10 5 0 0 (C) IEA Wind Task 19

07.02.2017

Icing profile

VTT

Conclusions

- There is an amount of correlation between the two icing measurements: no icing at 115m will most likely mean no icing at 272m as well.
- The icing rates are higher at the higher altitude
- Icing more frequent at higher altitude

- the amount of ice that would actually accrete on a structure at 272 is significantly higher.
 - Higher wind speeds on average during the same events
 - Higher Liquid water content

Conclusions, cont.

- Larger wind turbines will experience more frequent icing than current ones
- Icing intensity higher
- Wind speed higher

- → mitigation harder
- Blade heating power requirements higher
- Event impact seen faster, losses might also increase [3]

beyond the obvious

24/03/2023

VTT – beyond the obvious

References

- IEA Wind Recommended Practices for wind energy projects in cold climates edition 2011
- 2. R. Cattin "Blind Icing Map Validation", WinterWind, Skellefteå, 2017 <u>http://windren.se/WW2017/7_2_09_Cattin_IEA_Task_19_-</u> <u>Blind_icing_map_validation_Pub_v2.pdf</u>
- Gregow, E., B. Bernstein, I. Wittmeyer, and J. Hirvonen, 2015: LAPS–LOWICE: A Real-Time System for the Assessment of Low-Level Icing Conditions and Their Effect on Wind Power. *J. Atmos. Oceanic Technol.*, **32**, 1447– 1463, <u>https://doi.org/10.1175/JTECH-D-14-00151.1</u>.