

Power Curve Tests in Cold Climates on Complex Terrain

Experience, Challenges and Solutions

Alice Goward Brown

28th March 2023

Power Curve Tests in Cold Climates on Complex Terrain

- What is PPT purpose and outcomes
- PPT stages of process and fit into wind farm construction schedule
- Challenges and solutions:
 - Filters on meteorological parameters
 - Construction-based activities
 - Cold climate site-work
 - Instrument icing
- Summary of solutions road map to success!

WOOD

Power Performance Testing

PPT – A Strictly Controlled Power Curve Measurement

- Independent measurement of WTG power performance.
- IEC Standard: Measure the wind, measure the power, report the performance.
- Application: Compare the performance to what is expected.

Power Performance Testing

PPT – Purpose

- Investor requirement?
- Perceived underperformance:
 - Warranty AEP comparison?
 - Understand WTG power performance?
- Internationally recognised industry-standard method; the only irrefutable way to define how well WTGs are performing.

Power Performance Testing

PPT – Outcome

- Ostensible (unusual but possible): warranty claims.
- More likely:

highlight any opportunities to optimise performance.

• Definitive baseline of performance.

PPT overview - stages

Complexity Assessment

Site Calibration

Power Measurement

Relevant Wind Farm Development Stages Mild Climate

Relevant Wind Farm Development Stages Cold Climate

PPT in Relevant Wind Farm Development Stages The Usual Approach Does Not Work for Cold Complex Sites

PPT in Relevant Wind Farm Development Stages Practicable Solution for Cold and Complex Sites

PPT in Relevant Wind Farm Development Stages Practicable Solution for Cold and Complex Sites

PPT in Cold Climates

Working with Construction Schedule

Challenges	Solutions	
Road/WTG construction order fixed	Select test WTGs to accommodate	
Roads incomplete	Erect masts with helicopters	
Through-access needed and guy lines crossing roads	Masts microsited to allow passage underneath	
Blasting needed	Prioritise test locations first	
Access to hardstand required	Microsite mast and guys	
Short daylight hours	Ground team ready to go at short notice; dedicated, experienced staff	
Unsafe weather for climbing	Project management monitoring weather	
Key Points		
Start mast erection in <u>spring</u> of first construction period		
Share information openly and early to maximise ease of process		

Parameter Ranges and Terrain Complexity

- Meteorological parameters:
 - Turbulence intensity
 - Wind shear
 - Flow verticality
 - Veer
 - Precipitation
- Filters are applied in most warranted power curves.

A presentation by Wood.

WOO

Parameter Ranges and Terrain Complexity

- Complex forestry or terrain means higher ranges/values of meteorological parameters.
- Unoptimised filters:
 - Limit representativeness of PPT.
 - Lengthen measurement periods.

In cold climates this can make site calibration difficult to complete.

Complex site

Highly complex site

Site map (non-dimensionalised) Filters are applied in most warranted power curves In flat sites, un-optimised Δ wind shear filter can limit data retention

Distribution and retention of data

Filters are applied in most warranted power curves

In moderately complex sites, un-optimised **wind shear** and **TI** filters can limit data retention

Distribution and retention of data

Site map (non-dimensionalised)

Filters are applied in most warranted power curves

In very complex sites, unoptimised **TI** and, particularly, **flow verticality** filters can limit data retention

Distribution and retention of data

Meteorological Parameters - PPT in Cold Climates

In **cold climates,** unoptimised filters can make **site calibration difficult** to complete

Solution(s):

Allocate plenty of time for SC by working within and around first construction schedule

- Agree site specific environmental filtering conditions ahead of time

PPT in Cold Climates

Data Collection in Cold Weather

- Instrumentation icing
 - Limits capture of data in cold weather.
 - Limits representativeness of PPT.
- Heating all instrumentation expensive – at site calibration all but unfeasible.
- Our experience-derived solution:
 - Heated ultrasonic anemometer as secondary instrument.

Heated USA as secondary instrument maximises data retention

Heated NML instrument: Can it help maximise data retention at all mast levels?

Heated NML instrument: Can it help maximise data retention at all mast levels?

Heated NML instrument: Can it help maximise data retention at all mast levels?

Heated NML instrument: Can it help maximise data retention at all mast levels?

Summary

Key Solutions to the Challenges

- Plan PPT into the construction schedule
 - Facilitate open communication between construction team and measurement experts
 - Arrange masts around roads and hardstands
 - Erect site calibration masts as early as possible

Summary

Key Solutions to the Challenges

- Measure meteorological parameters early in site development
 - Include a heated 3D USA to measure flow verticality!
- Fit PC filters to the site conditions
 - Communicate with WTG OEM and independent expert – cross-party agreements are possible and fruitful
- Power masts from multiple sources

Power Curve Tests in Cold Climates on Complex Terrain

Well-proven Process

- Checks warranted performance is met
- Identifies opportunities to optimize

Planning

- Engage early to:
 - Maximise benefits
 - Manage challenges

Experience

• Work collaboratively with open communication throughout process

End the first years of operation with a clear picture of wind farm power performance

Power Curve Tests in Cold Climates on Complex Terrain

With thanks to our Clients for the use of Project data: Suomen Hyotytuuli Oy Statkraft Austri OX2 Vasa Vind wood.

PPT in Relevant Wind Farm Development Stages Optimised Solution for Cold and Complex Sites

PPT in Cold Climates

Working with Construction Schedule

Challenges	Solutions	
Road/WTG construction order fixed	Select test WTGs to accommodate	
Roads incomplete	Erect masts with helicopters	
Through-access needed and guy lines crossing roads	Masts microsited to allow passage underneath	
Blasting needed	Prioritise test locations first	
Access to hardstand required	Microsite mast and guys	
Short daylight hours	Ground team ready to go at short notice; dedicated, experienced staff	
Unsafe weather for climbing	Project management monitoring weather	
Key Points		
Start mast erection in <u>spring</u> of first construction period		
Share information openly and early to maximise ease of process		