

Part of Croda International Plc

Presented by REWITEC GmbH

April 2022

Higher reliability and longer lifetime for gears and bearings in wind turbines

Agenda

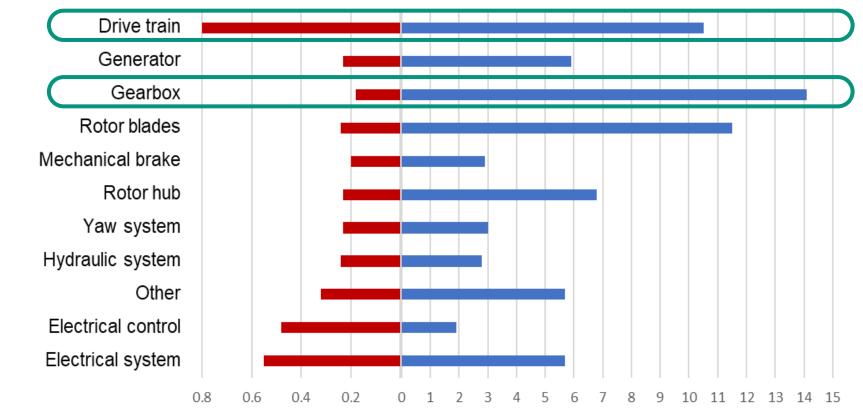
- ⇒Company and products
- ⇒Technology
- ⇒Scientific tests
- ⇒Examples of application
- Gearbox and bearing lifetime calculation
- ⇒Conclusion

The challenges of unscheduled maintenance costs remain

Calculation mistakes, environmental conditions, missing or even wrong maintenance can cause unforeseen breakdowns

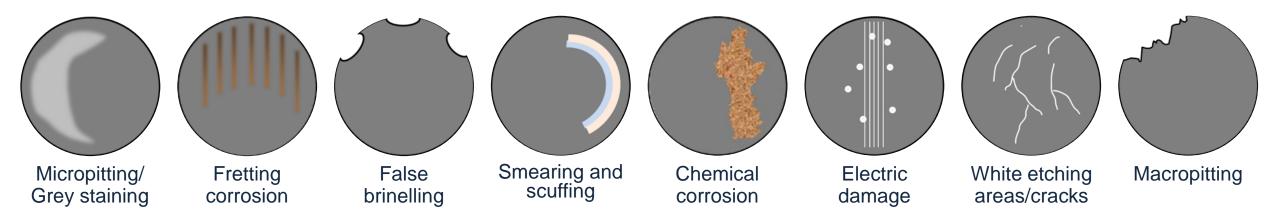
Maintenance represents 25 % of the total wind turbine cost over its lifetime

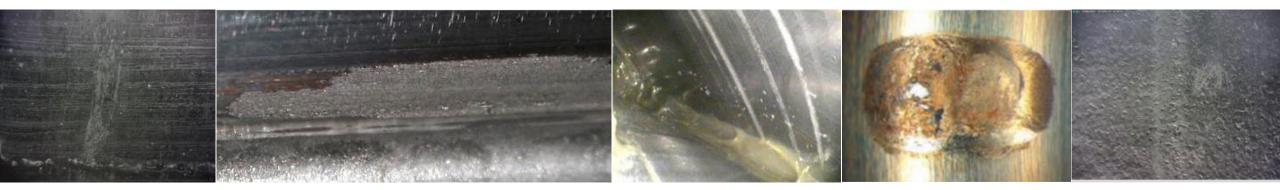
Unscheduled maintenance represents **30 - 60 %** of total maintenance costs Up to **14 days** needed to repair a gearbox or bearings - more than any other component


Average cost to repair a gearbox failure is **380,000 \$**

Wind turbine reliability remains an issue

Annual failure rate/ turbines per year


Downtime per failure (days)



Component

Typical damage to gears & bearings

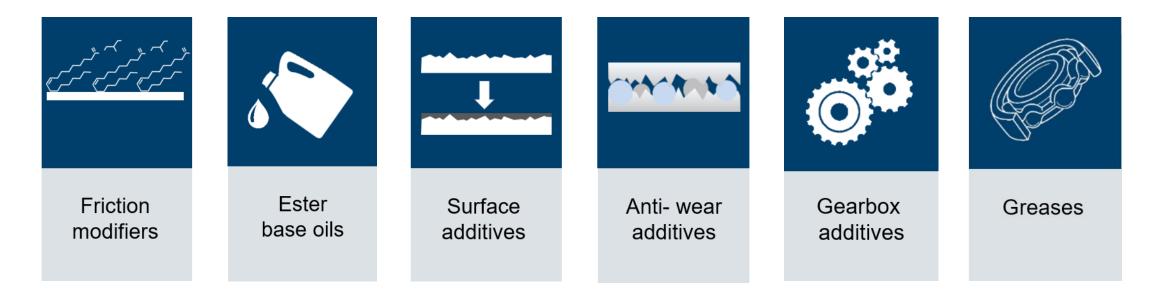
5

Company and products

Smart science to improve lives[™]

Key facts about REWITEC

- ⇒ Founded in 2003
- Close cooperation with universities and research institutes
- Supported by the German Government
- ⇒ Patents in Europe, China, USA
- ⇒ Acquisition by CRODA in 2019



About Croda

⇒Manufacturer of high-performance ingredients and technologies: development, production and distribution of speciality chemicals.

Target markets

⇒ Wind energy⇒ Onshore⇒ Offshore

⇒Industry

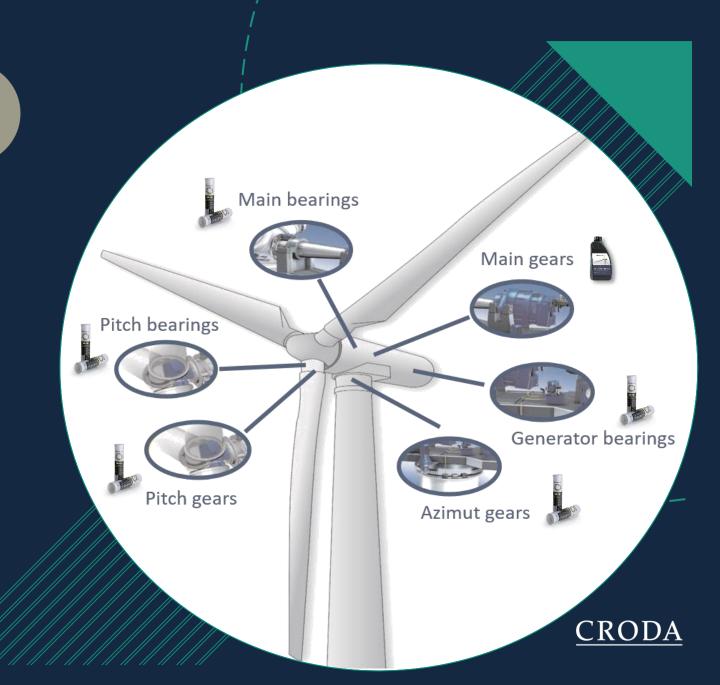
- ⇒ Steel
- **⇒** Cement
- ⇒ Mining
- ⇒ Oil, Gas

⇒ Marine

- ⇒ Shipping
- ⇒ Barges
- ⇒ Yachts

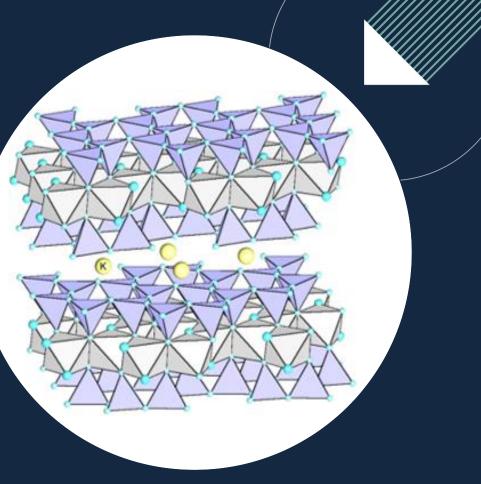
- *⇒* Automotive

 - ⇒ OEM


9

Examples of application

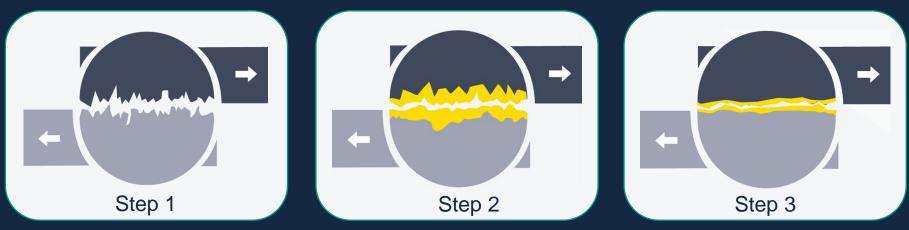
⇒ Over 3,000 successfully treated wind turbines globally



REWITEC technology

Phyllosilicate based particle additive

- ⇒ Platelet-shaped particles with layered crystal structure
 - ⇒ Si-O and Al-O based layers
 - ⇒ Strong *covalent* bonds within the layer
 - ⇒ Weak *van der Waals* interaction between the layers
- ⇒ Easy shearing between the layers
 - ⇒ Friction reduction
- ⇒ Big specific area with high adsorption ability
 - ⇒ covering the surface, filling the holes
 - ⇒ Protective, repairing and smoothing effect
- ⇒ Particle size d90 = 4 µm
- Soft material: Mohs Hardness Scale 2.5 (like fingernail!)



Our scientific paper:

- "Tribological properties of a phyllosilicate based microparticle oil additive"
- Chizhik et al., Wear 426–427 (2019) 835–844

How REWITEC works

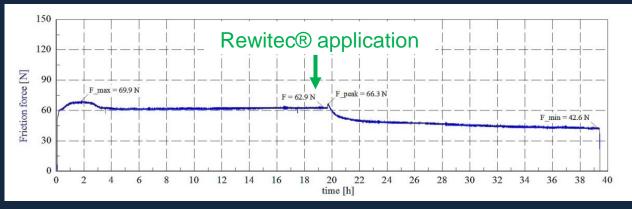
Significant reduction of friction, wear, roughness and temperature

⇒Advantages:

- Compatibility to all common lubricants
- Temperature independent
- No chemical interactions with other lubricant parts
- ⇒ Low dosage

Scientific tests

Smart science to improve lives[™]

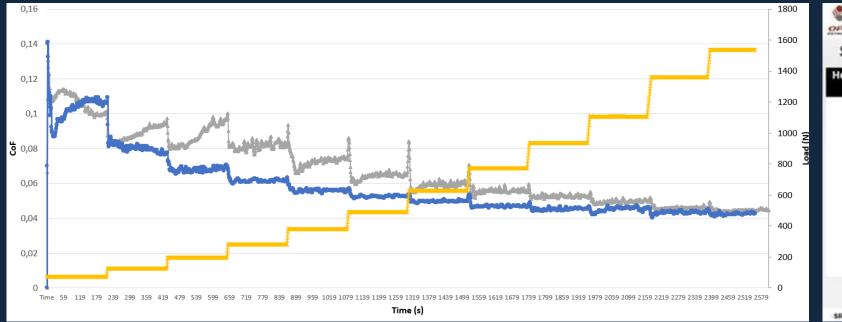

14

2-Disc assembly rolling wear test – gear oils

- ⇒ Stress value:
- Rotating speed:
- ➡ Temperature:
- ⇒ Friction coefficient:

- 1 GPa (normal force 2150 N) 424 rpm / 339 rpm, slip 20 % 39,3 h
- oil inlet temperature 60 °C
- µ=normal force/friction force

Castrol Optigear Synthetic X320



Oil	Friction reduction	Roughness reduction
Castrol Optigear Synthetic X320	33 %	41 %
Mobilgear SHC XMP 320	35 %	44 %
Klübersynth GEM 4-320N	40 %	54 %
Fuchs Unisyn CLP 320	36 %	50 %
Amsoil PTN 320	46 %	18 %
Shell Omala S4 GX 320	42 %	25 %
Klüberbio EG 2-150	55 %	40 %
Fuchs Pentosin EG FFL-7A	41 %	35 %
Automotive racing gear oil	55 %	40 %

SRV – FZG simulation

Temperature:	98°C
Frequency:	50 Hz
Stroke Length :	4 mm

Testing concept for gour oils

Step tests with modified parameters

Hertzian surface pressure [N/mm ²]	FZG load step	SRV® normal force [N]
146	1	7
295	2	28
474	3	73
621	4	126
773	5	195
929	6	282
1080	7	381
1223	2 3 4 5 6 7 8 9	489
1386	9	628
1539	10	774
1691	11	934
1841	12	1107
2040	13	1360
2170	14	1538
SRVD Technology Platform	10	Excellence in Tribology

Castrol X320

Castrol X320 + Rewitec

🗕 Load

⇒ 12 % wear reduction with REWITEC⇒ Up to 30 % friction reduction with REWITEC

FE-8 roller bearing test

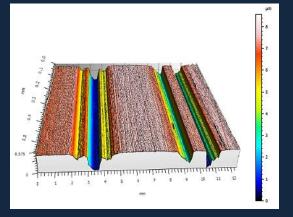
⇒ Speed:	7.5 rpm
⇒ Test duration:	80 h
⇒ Temperature:	80°C
⇒ Load:	80 kN

Advantages with REWITEC:

 \Rightarrow 17 % less wear

Smart science to improve lives[™]

- ⇒ Smoother surface
- Better load distribution
- ⇒ Protection for rolling elements and rings



and Energy

Castrol X320

Castrol X320 with **REWITEC**[®]

4 Ball test bench – grease test

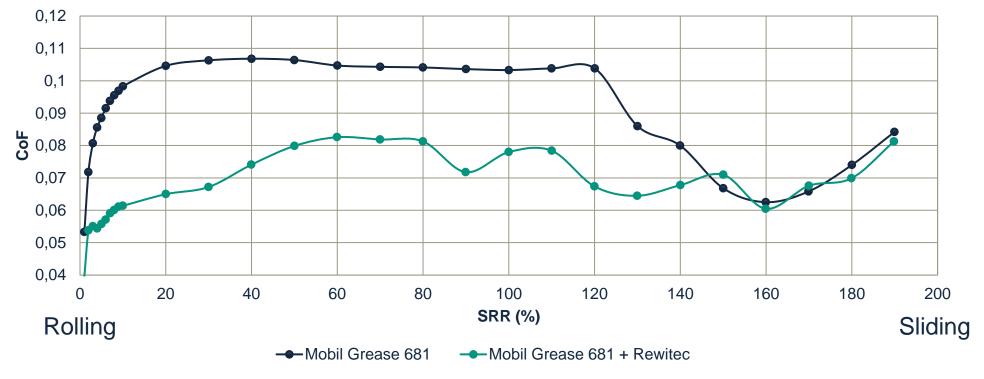
According to DIN 51350 part 2 (welding force)/3 (wear test):

Test load: Rotating speed: Test-duration: 2000 – 12000 N / 300 N 1450 rpm 1 min / 60 min

lest Rig	Test Method	Lubricant	Non Seizure Load [N]	Weld Load [N]	Wear Scar [mm]
	Weld Load DIN 51350 Part 2	Mobil SHC Grease 681 WT	2000	2200	1.15
VKA	Wear Scar DIN 51350 Part 3	Mobil SHC Grease 681 WT – modified with Rewitec	2400	2600	1.16

Advantages with **REWITEC**:

- ⇒ 17 % higher non seizure load
- ⇒ 15 % higher weld load



MTM test bench - grease test

⇒ Load:	70 N
∃ Temperature:	23°C
⇒ Time:	172 s

700 mm/s

⇒ Up to 38 % friction reduction with Rewitec

False-Brinelling test – For pitch bearing evaluation

- ⇒ Frequency:
- ⇒ Oszillation angle:

Fuchs LX460

pre-damaging (1.3 h; +/- 0.5°)

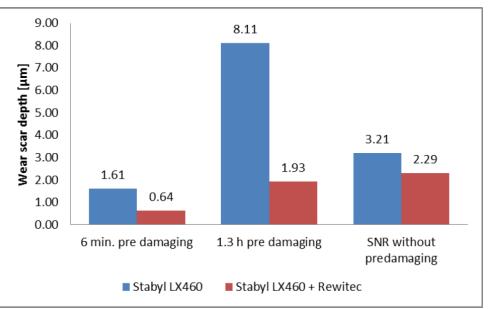
- 25 Hz
- +/- 0.5° -> +/- 3.0°
- 3 kN to 4 balls (750 N per ball)
- room temperature

ARKL Type 51206 with 4 rolling elements

Fuchs LX460 Fuchs LX460 + **REWITEC™**

Run after the damaging (3 h; +/- 3°)

on the basis of a decision by the German Bundestag



Test specimen

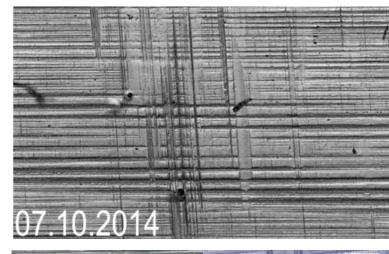
Examples of application

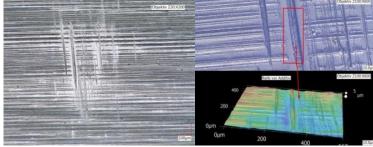
Smart science to improve lives[™]

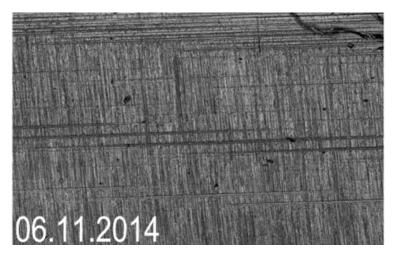
Gearbox application procedure

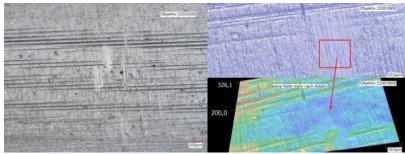
- ⇒ Determine oil volume in the system
- ⇒ Determine filter model and type
- ⇒ Climb tower
- Insert REWITEC[™] run-in filter 30 micron SS
- ⇒ Shake REWITEC[™] W100 bottle to ensure mixed from settling
- ⇒ Take inspection cover off gearbox & pour W100 into gearbox
- Replace inspection cover & run turbine
- ⇒ Return to turbine after 500 running hours & replace orginal filter
- Reapplication every 2-5 years based on gearbox & operating conditions
- ⇒ DATA COLLECTION: Before & After Impressions (see picture), CMS, borescope, & oil analysis

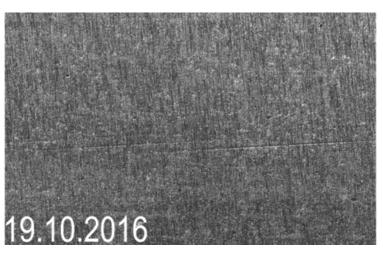
Main bearing application procedure

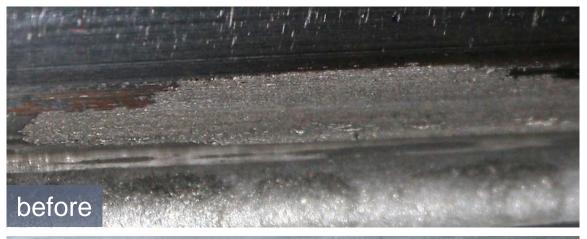

- ⇒ Determine Grease Volume in the system
- ⇒ Determine Grease Type and Brand
- ⇒ Determine if Grease is useable
 - If Grease Unusable Flush or Purge bad grease from system
 - Top Treat new or usable grease with REWITEC™ GR400 tubes
- Run Turbine
- ⇒ Reapplication Recommend small dosage every year as part of maintenance
 - ⇒ Small dosage = total reapplication every 2-5 years based on gearbox & operating conditions
- ⇒ DATA COLLECTION: Before & After Impressions (see picture), CMS, Borescope, & Oil Analysis






Examples of application

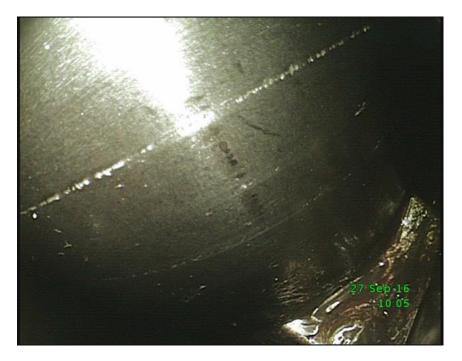

⇒ Wear development on a Bosch Rexroth gear tooth (GE 1.5 SL) over a period of two years



- Run through marks on the tooth flank after 6 weeks and 2 years:
 - Reduction of the surface roughness and friction force

Examples of application

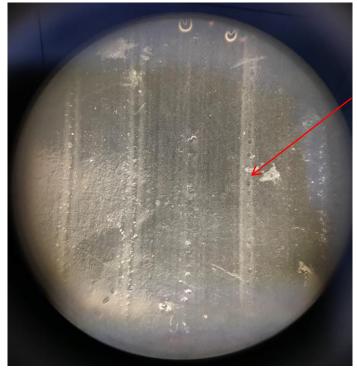
➡ Wind turbine gearbox CSIC 2 MW VSCF

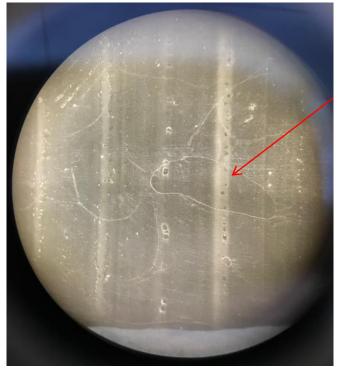


⇒ Significant operational wear visible
⇒ In the foot area visible micro pitting
⇒ Oxidation visible

- ⇒ Operational wear noticeable reduced

Coating and analysis of a main bearing GE 1.5 wind turbine

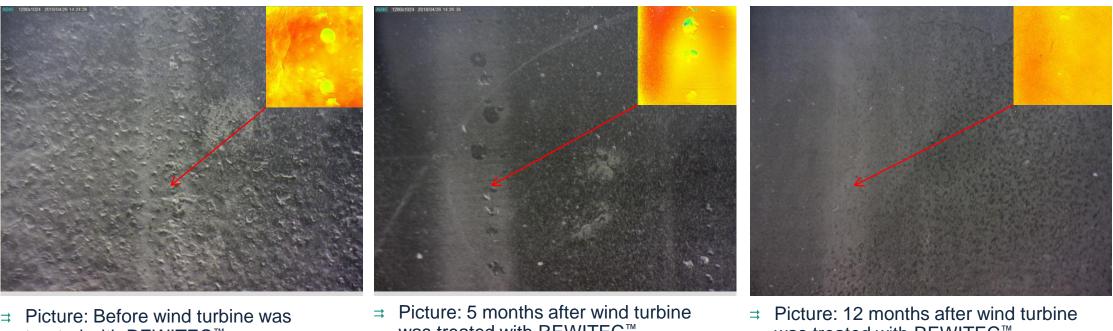

⇒ Picture: main bearing roller 18 months before REWITEC[™] treatment


⇒ Picture: main bearing roller 5 months <u>after</u> REWITEC[™] treatment


Coating and analysis of a main bearing (outer ring) GE 1.5 wind turbine

⇒ Picture: Before wind turbine was treated with REWITEC[™]

⇒ Picture: 5 months after wind turbine was treated with REWITEC[™]



⇒ Picture: 12 months after wind turbine was treated with REWITEC[™]

Red arrow shows the same right track on the surface imprint

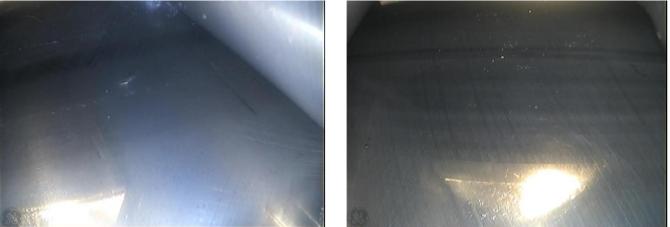
Coating and analysis of a main bearing (outer ring) GE 1.5 wind turbine

- ⇉ treated with REWITEC[™]
- \Rightarrow Ra = 0,556 µm (within the track)

Smart science to improve lives[™]

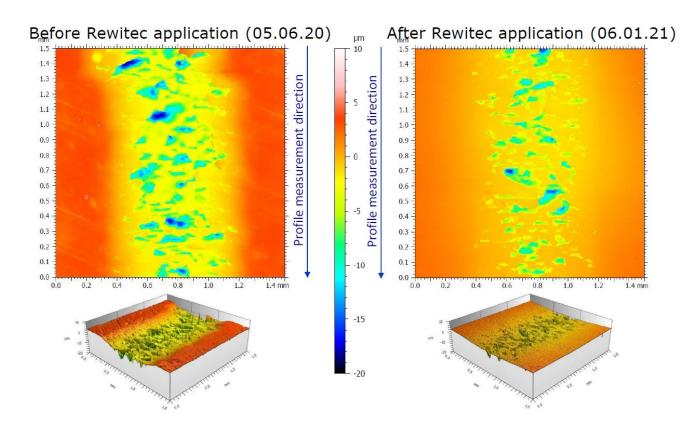
- was treated with REWITEC[™]
- \Rightarrow Ra = 0,403 µm (within the track)

- was treated with REWITEC[™]
- \Rightarrow Ra = 0,225 µm (within the track)


28

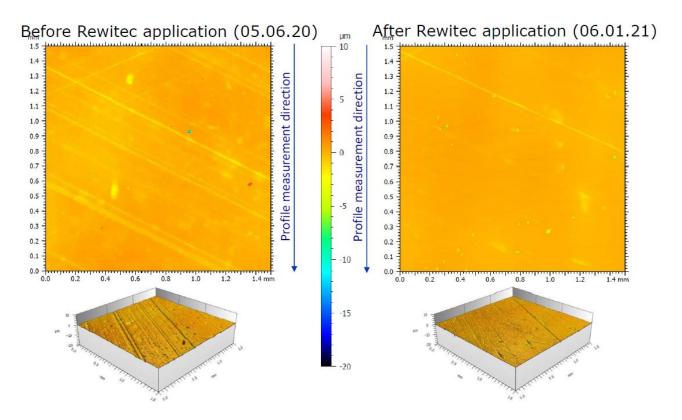
Main bearing (outer race) GE 1.5 wind turbine

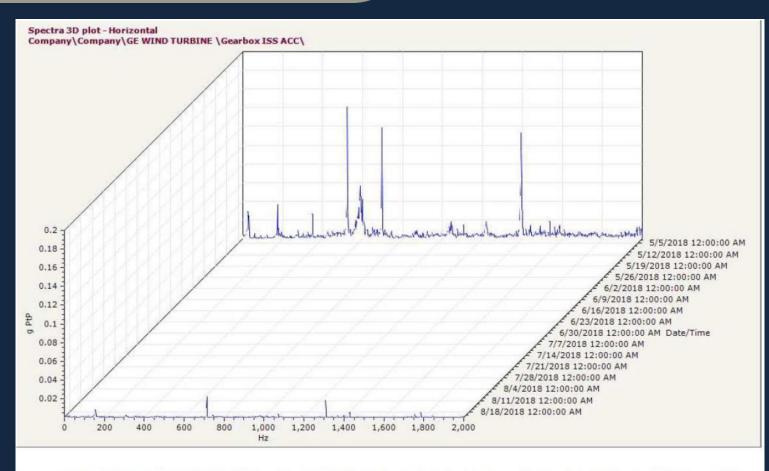
⇒ Before wind turbine was treated with REWITEC[™]



⇒ 6 months after wind turbine was treated with REWITEC[™]

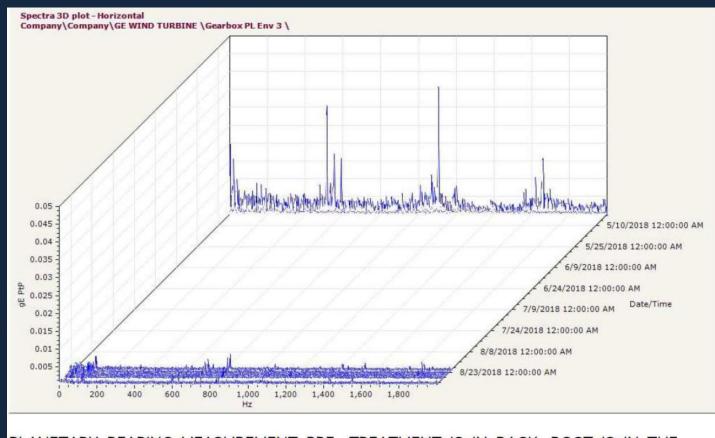
Coating and analysis of a main bearing GE 1.5 wind turbine


Roughness	Before	After	Difference
S _a	3.00 µm	1.47 µm	- 51 %
R _a	0.789 µm	0.600 µm	- 24 %
			- 18 %


Coating and analysis of a main bearing GE 1.5 wind turbine

Roughness	Before	After	Difference
S _a	0.266 µm	0.159 µm	- 40 %
Sz	22.2 µm	11.6 µm	- 48 %
R _a	0.145 µm	0.064 µm	- 56 %
R _z	1.31 µm	0.767 µm	- 41 %

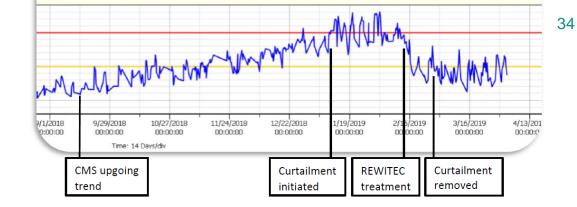
Wind turbine 1.5 MW GE 1.5 SLE ISS Gear



Smart science to improve lives[™]

ISS GEAR MEASUREMENT PRE- TREATMENT IS IN BACK, POST IS IN THE FOREGROUND

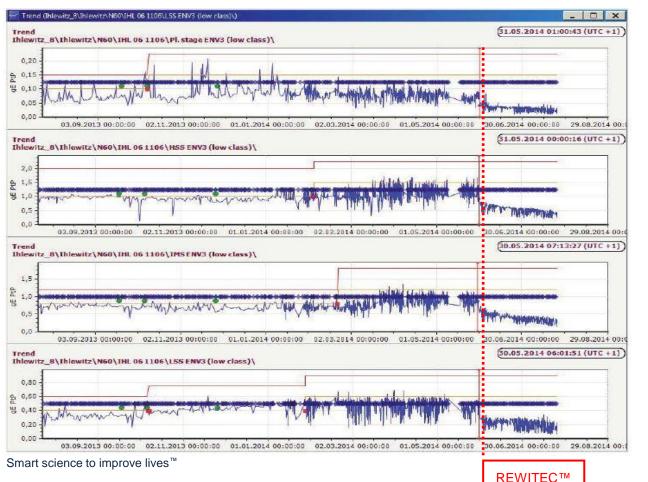
Wind turbine 1.5 MW GE 1.5 SLE Planet Bearing



PLANETARY BEARING MEASUREMENT PRE- TREATMENT IS IN BACK, POST IS IN THE FOREGROUND

Smart science to improve lives[™]

Wind turbine 1.5 MW GE 1.5


⇒ Before REWITEC[™] treatment

⇒ After REWITEC[™] treatment

Examples of application

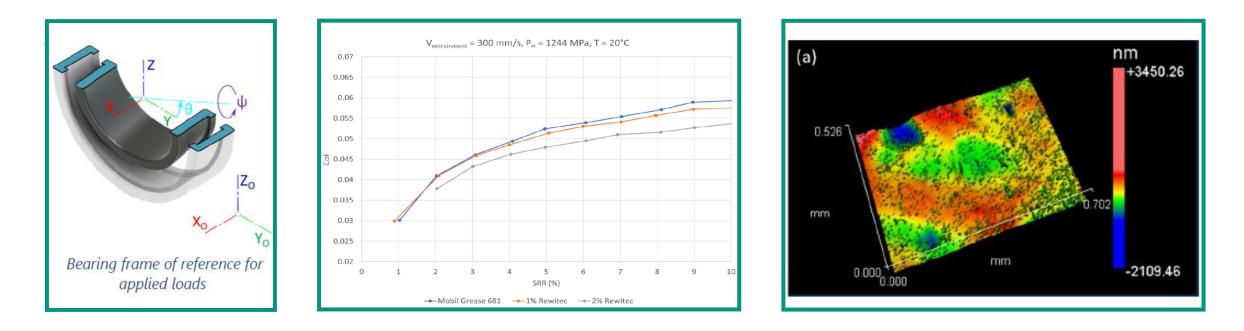
Goal of application:

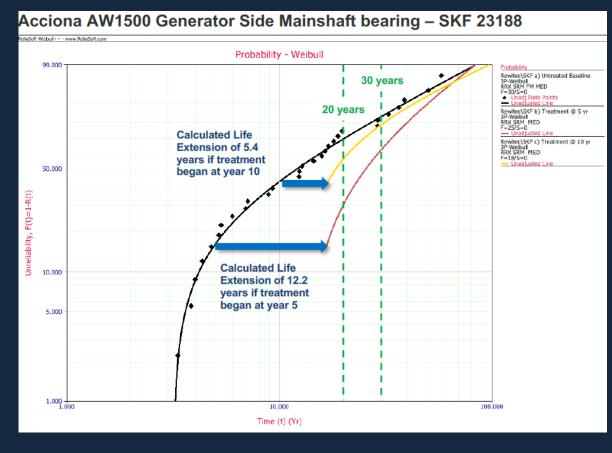
- ⇒ Wear protection of a Nordex N60 gearbox by REWITEC[™] coating concentrate in May 2014
- ⇒ Protection against further wear and prolongation of lifetime

⇒ The report shows a significant difference. Stop of the high vibration level, decrease of the damage frequency.

Sentient Science

Lifetime Calculation Model by using REWITEC[™]



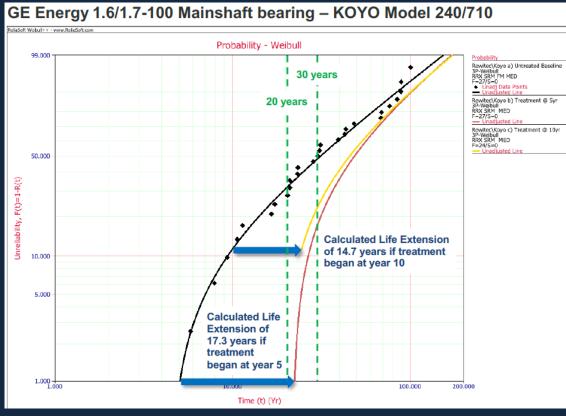

Sentient Science Lifetime Calculation

⇒ Calculation based on bearing geometry, friction coefficient and surface topography:

Sentient Science Lifetime Calculation

⇒Mainshaft Bearing Life Extension by REWITEC[™] GR400 Grease using Sentient Science' DigitalClone[®]

⇒Results:


- Significant reduction in the probability of failure of a main bearing by REWITEC[™]

- More even load distribution
- Lower local pressure/stress
- ⇒ The earlier the application, the greater the effect

Sentient Science Lifetime calculation

⇒ Mainshaft Bearing Life Extension by REWITEC[™] GR400 Grease using Sentient Science' DigitalClone[®]

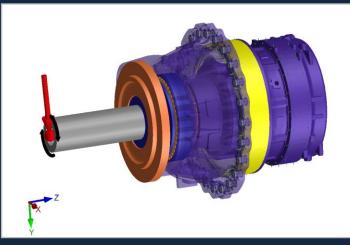
⇒ Results:

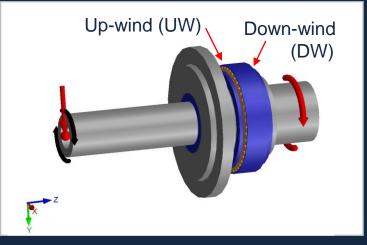
- ⇒ Significant reduction in the probability of failure of a main bearing by REWITEC[™]

- ⇒ More even load distribution
- The earlier the application, the greater the effect

Romax technology

Bearing life study by Romax DT software, using ISO 16281 standard

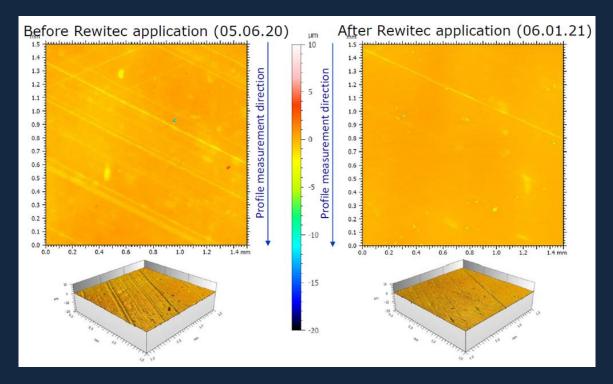

Smart science to improve lives^{*}


Romax technology Bearing life study

Assumptions:

- Main bearings are FAG F-573405 single-row taper roller bearings
- ➡ Lubricant is Mobil SHC 681 WT Grease
- ISO 4406 contamination code Normal Cleanliness
- ➡ Temperature = 70 degrees C
- Viscosity ratio and contamination factor calculated according to ISO 281
- I ⇒ L1 life calculated corresponding to 99% reliability, using a1
 modification factor of 0.25

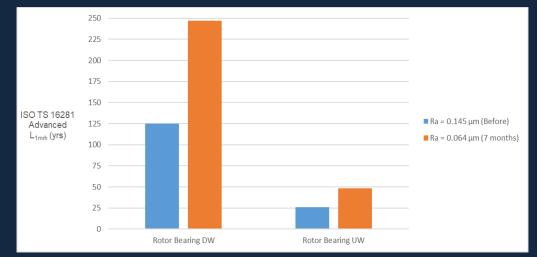
⇒ The full WT2000 model simplified version used for the analysis


Simplified version used for the analysis



Romax Bearing life study

⇒ Surface roughness values before and after the REWITEC grease application



Roughness	Before	After	Difference
S _a	0.266 µm	0.159 µm	- 40 %
Sz	22.2 µm	11.6 µm	- 48 %
R _a	0.145 µm	0.064 µm	- 56 %
R _z	1.31 µm	0.767 µm	- 41 %

Romax Bearing life study

⇒ Mainshaft Bearing Life Extension by REWITEC[™] GR400 Grease using Romax DT software

140 120 100 80 Extension in L_{1mth} (yrs) ---- DW 60 40 20 Ω 12 14 16 Year of Rewitec product application

 L_1 life of main bearings

	Original life (yrs)	Rewitec application at 5 years		Rewitec application at 10 years	
	- Ra = 0.145 μm	life (yrs)	Life extension (years (%))	Extended life (yrs)	Life extension (years (%))
DW	125	242.1	117.1 (93%)	237.2	112.2 (90%)
UW	26	44.2	18.2 (70%)	39.9	13.9 (53%)

Conclusion

Conclusion

Less surface roughness, friction and temperature in the drive train system means:

- Less stress and wear for the gearbox and bearings
- ⇒ Less stress for the lubricants
- ⇒ Repairing and protection effect
- ⇒ Higher efficiency
- ⇒ Higher reliability and availability, no downtime
- ⇒ Significant lifetime improvement
- ⇒ Cost savings, higher earnings

Our services

Smart science to improve lives[™]

Recommendations, partners and customers

Part of Croda International Plc

If you need more support – Please contact us.

REWITEC GmbH Dr.-Hans-Wilhelmi-Weg 1 35633 Lahnau Germany

Tel.: +49 6441 445990 E-mail: rewitec.info@croda.com www.rewitec.com

