

"To save all we must dare all."

Friedrich Schiller, Fiesco's Conspiracy at Genoa

Agenda

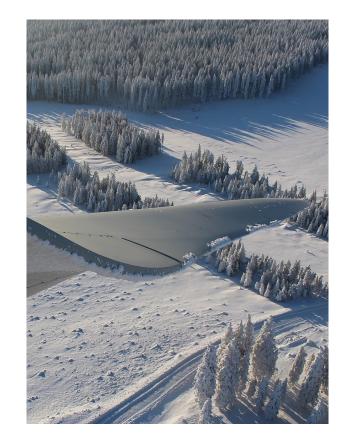
- 2. Effect of WTG and IPS operating modes on icing
- 3. Risk acceptance with respect to background risk levels
- 4. Placement of warning signs
- 5. Proposal of a general "Ice Fall Zone" warning sign

Starting point for the revision process

- First edition published in October 2018
- Since then widely adopted standard within wind community
- In-depth treatment of site-specific icing risks enables less excessive distance requirements
 - Opening up new opportunities

Starting point for the revision process

- Division of risk assessment process into
 - Mathematical model for trajectories
 - Site- and turbine-specific icing input data
 - Risk analysis and evaluation
 - Process as is remains unchanged
- Amendments in the form of
 - More detailed discussions
 - Additional background information/references



Effect of WTG and IPS operating modes on icing

- Numerous possible combinations of operating modes of WTG and IPS when icing occurs
 - WTG in operation
 - IPS in anti-icing mode
 IPS in de-icing mode
 - No active IPS / IPS inactive
- Number of ice pieces falling / being thrown also highly dependent on location and turbine itself
 - IEA icing class

WTG make and model

WTG stand-still/idling

Effect of WTG and IPS operating modes on icing

- Table for number of ice pieces updated by information on operating turbines w/ and w/o active IPS
- (a), (b) and (d) obtained by measurement campaign
- (c) extrapolated from (a)

IEA Icing Class	Meteorological icing (% of year)	Instrumental icing (% of year)	Production loss (% of year)	Yearly number of ice pieces per wind turbine (ice pieces/year)			
				Idling No active IPS	Idling IPS de-icing	Operational No active IPS	Operational IPS anti-icing
				(a)	(b)	(c)	(d)
5	> 10	> 20	> 20	> 3200	> 8800	> 9600	> 8000
4	5 – 10	10 – 30	10 – 25	1600	4400	4800	4000
3	3 – 5	6 – 15	3 – 12	800	2200	2400	2000
2	0.5 – 3	1 – 9	0.5 – 5	400	1100	1200	1000
1	0 – 0.5	0 – 1.5	0 – 0.5	80	220	240	200

Table 2: IEA icing class and corresponding yearly number of ice pieces per wind turbine, based on manual site measurements of ENERCON E-82 turbines (78 m HH) with and without active IPS, respectively in anti- or de-icing operational mode (column (a), (b) and (d)), and an extrapolation from the values of column (a) to the operational state without active IPS (column (c), see paragraph below).

Risk acceptance with respect to background risk levels

 Risk acceptance criteria are deduced from MEM principle (Minimum Endogenous Mortality):

The risk posed by a given technology may not increase the MEM by a significant amount (<5%).

- ➤ Max. limit of 10⁻⁶ fatalities per year for the individual risk
- Additional risk aversion factor for larger groups of people
 - ➤ Max. limit of 10⁻⁴ fatalities per year for the collective risk

Risk acceptance with respect to background risk levels

- Numerous risks in the vicinity of a WTG, even more during daily life in general
- Some risks in daily life are knowingly accepted, e.g. participation in traffic
- Accident rate per km on higher-ranking roads in general much higher than collective risk of icing
 - ➤ Risk from icing does not significantly increase socially accepted risk posed by traffic
 - Accumulation of risks posed by several turbines along such a road can be neglected

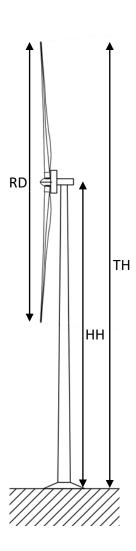
Source: www.stadtwerke-muenster.de

Risk acceptance with respect to background risk levels

- Accumulation only to take into account when relevant for most exposed (group of) individual(s)
- Reference to background risk level can be transferred to other sectors of civil life, if risk is accepted by public in general (e.g. risk of flooding)
- Can also be adopted to individual risk, e.g. for specific activities (alpine touring, snow shoeing etc.)
- Risk acceptance criteria then again given by insignificance in comparison to background risk level (e.g. <5% as for MEM principle)

Source: www.tourentipp.de

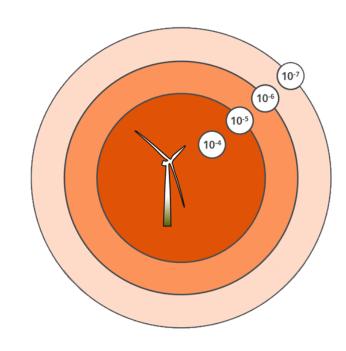
Placement of warning signs


- Placement of warning signs at all relevant entry points to area around turbine(s) is important for effectivity
- Numerous country-specific rules of thumb in place, e.g.:

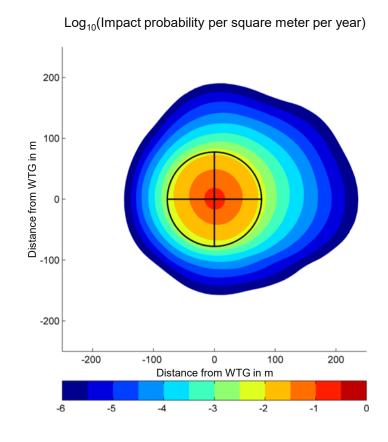
Norway: HH + RD

Austria: 1,2 * TH

• Germany: 1,5 * (HH + RD)


- Fixed distances represent conservative approach
- Probability for ice pieces falling / being thrown that far only becomes relevant for extreme wind conditions

Placement of warning signs


- Warning sign positions can be based on iso-risk contours such as LIRA (Localized Individual Risk per Annum)
- 10⁻⁶ LIRA constitutes threshold from negligible risk to possible risk
 - Further outside no relevant risk to be expected
- 10⁻⁶ LIRA contour corresponds to impact probability contour of roughly 10⁻⁵ per square meter per year

Placement of warning signs

- Up to 10⁻³ impact probability contour no exceedance of risk acceptance criteria for short exposure times per day
 - Pedestrian for ½ h
 - Car passing 2 times per day
 - ➤ 10⁻³ impact probability contour is suitable for placement of warning signs
- Site-specific usage scenarios/frequencies can require other limits and distance definitions

Proposal of a general "Ice Fall Zone" warning sign

- Wide variety of warning signs for ice fall / ice throw in use
- Some convey nature of possible hazard understandably, many do not
- Often (lengthy) written warnings in absence of standardized template a warning sign
 - Reduced warning effect of text-only signs
 - Possible language barrier for nonnative speakers

Source: F2E

Proposal of a general "Ice Fall Zone" warning sign

- Warning sign templeate aims to convey risk of ice fall around turbines in a simple but effective way
 - Turbine as source of risk for ice fall
 - Ice fall risk both below and around turbine
 - Icing as icicles & snowflakes to convey nature of risk
 - Risk zone both visually and written
 - 'Warning' preferred over 'Attention' to emphasize possible hazard
 - 'Zone' common in many languages compared to area

Thanks for your attention!

CONTACT:

Dipl.-Phys. Claas Rittinghaus

Projektleitung • Project Management

Energiewerkstatt Verein

- Heiligenstatt 23 5211 Friedburg Austria
- +43 664 12 242 72
- +43 7746 28 212 -13
- **+43 7746 28 2 12 22**
- claas.rittinghaus@energiewerkstatt.org
- www.energiewerkstatt.org