

WindThrow 1.2

The aerodynmics ice throw toolbox, now with a (better) GUI

Hamid Sarlak Department of Wind and Energy Systems Technical University of Denmark <u>hsar@dtu.dk</u>

Motivation

WECC: Known advantages, but ...

- Increases in fatigue loads due to load imbalance
- Ice risks are much more significant than blade/fragment failure (Frequency blade failure 10 -3 /year; ice throw > 10/year)
- According to local legislations, the danger of getting hit by ice fragments needs to be assessed already during planning phase

https://www.eologix.com/en/hoarfrost-rime-ice-and-glaze-ice/

Ice throw calculation classification

- Empirical formulas: e.g. d = 1.5 (D + H) for Ice throw
- Simple ballistic models (vacuum)
- More detailed aerodynamic models
- Higher fidelity tools and methods + AI (?)

windThrow's Ice throw model

- Blade element theory is used
 - Aerodynamic loads calculated on fragments and corresponding motions translated into a global coordinate system

1: **Program** SAVBAL(*ABL* and turbine parameters, initial conditions)

2:	Call initiate ! Evaluate initial positio
3:	orientation and velocities of fragme
4:	at t_0 in it's local coordinates of the second s
5:	while $z_g \leq 0$ do ! main loop of the program
6:	iteration until the body hits the ground
7:	Call trans1 $\vec{Y}^{old} \leftarrow [\mathbf{R}, \overline{og}_b, \vec{v}_b, \vec{\omega}_b]^{old}$! Arrange a set of 18 ODE
8:	Call local velocity $\vec{v}_{local} \leftarrow \mathbf{R}, \vec{v}_b, \vec{\omega}_b, \vec{v}_{wind}(h, t)$! Calculate relatively to the contrast of the
	velocities
9:	Call aerodynamics $\vec{F}_{total}, \vec{M}_{total} \leftarrow \mathbf{R}(\alpha), \vec{v}_{local}, \vec{\omega}_b$! Calculate loa
10:	Call RungeKutta $\vec{Y}^{new} \leftarrow [\vec{Y}, \vec{F}_{total}, \vec{M}_{total}]^{old}$! time integration
11:	Call Trans2 $[\mathbf{R}, \overline{og}_b, \vec{v}_b, \vec{\omega}_b]^{new} \leftarrow Y^{new}$! update new value
12:	End while
13:	End Program

Results of ice throw simulations

lable IV. Asp	IV. Aspect ratios, reference chord length c_{ref} and detached mass <i>m</i> of the ice fragments $(\rho_{ice} = 0.7 \text{ kg/m}^3)$ used for throw simulation of turbines of different sizes.									
	2.3 MW		5 M	W	10 N	1VV	20 MW			
Cases – AR	C _{ref} (m)	<i>m</i> (kg)	C_{ref} (m)	<i>m</i> (kg)	C_{ref} (m)	<i>m</i> (kg)	C_{ref} (m)	<i>m</i> (kg)		
AR = 1		0.18		0.43		0.97		2.16		
AR = 2	0.1	0.36	0.15	0.87	0.2	1.95	0.3	4.33		
AR = 3		0.54		1.31		2.94		6.49		

New user interface and capabilities

windThrow v1.2

User friendliness

- Integration of other throw models
- Integration of guidelines and datasets
- Complex terrain
- Turbulence

• • •

windThrow 🔵 🗐 😣										
File Actions										
									2	
Name	Unit	Unit Input values								
Turbine Power	[MW]	V] 2.3								
Hub Height	[m]	100.0			Operational WT					
Blade Length	[m]	50.0					lin	outo		
Nb. of Blade Elmts.	[-]	25					1	puis	, ICE Class	
Wind Profile	[-]	unif	orm		-					-
Surface Roughness	[m]	0.1								
Power law Exponent	t [-]	0.14	3							
RANDOM VARIABLES (for Monte-Carlo analysis) Choose sampling method: • Purely stochastic Multiplicative (Not recommended unless acquainted with!) Hep										
			Ra	ndom dis	stribution:	Help				Number
Name	Unit		Static	Uniform	Gaussian	Weibul			Input values	of samples
Turb. Intensity	[%]			۲			Min -	8.0	Max = 20.0	
Tip speed	[m/s]			۲			I M	nto	carlo innute	
Hub wind speed	[m/s]			۲				JIIIC	cano inputs	
Yaw error	[deg]				۲		Mean=	0.0	Variance= 25.0	
Pitch angle	[deg]		۲				Constant=	0.0		
Azimuth throw	[deg]			۲			Min.=	0.0	Max.= 360.0	
Detachement point	[%BldLe	en]		۲			Min.=	20.0	Max.= 95.0	
Ice aspect ratio	[-]			۲			Min.=	0.1	Max.= 10.0	
Ice width	[m]			۲			Min.=	0.05	Max.= 0.5	
Ice density	[kg/m^	3]		۲			Min.=	300.0	Max.= 900.0	
-> Total number of samples = 0 Validate										
MONTE-CARLO SIMULATION Execute! (Reminder: The RANDOM VARIABLES data may need to be validated above before executing)										
PLOTTING										
PLOTTING In pop-up window for editing and printing (e.g. to file)										
Choose plotting option: • Hit map • Energy map • Momentum map • Mass map • Distance density histogram										

Old interface!

Closure:

- Since the last time,
 - New inflow turbulence, complex terrain, further software development was added to the previously developed massive computations (Monte-Carlo) and GUI
- In the future,
 - Ice risk and mitigation module
 - Improving the database and validation (AI is the next step)
 - Robustness and software development aspects

Thank you for your attention!

Contact: Hamid Sarlak - hsar@dtu.dk