WHEN TRUST MATTERS

Modelled icing losses with WICE: A blind test in France

Stefan Söderberg and Giacomo Rossitto, DNV Alan Derrick, Min Zhu, Laurie Gilbert, RES-Group

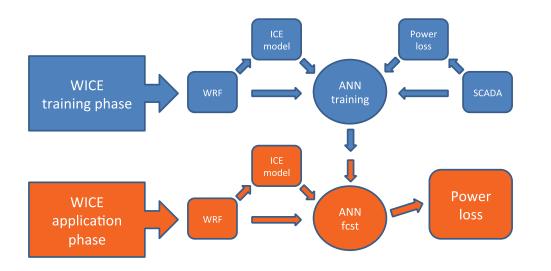
Winterwind 2021, online

21 April 2021

Part 1: Introduction and MethodologyPart 2: Validation resultsPart 3: Summary

Part 1: Introduction and Methodology

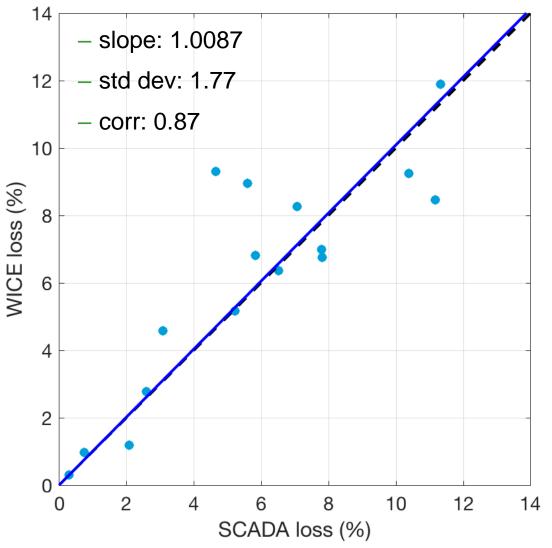
Icing study model chain



Icing study model chain – production loss

A combination of physical and statistical modelling

ANN – Artificial Neural Network


Training data set from operational wind farms in Sweden.

Previous validations

- Internal validation with 10 wind farms located in Scandinavia (Winterwind 2019, Umeå)
- Blind test for RES, 5 wind farms in Sweden (Winterwind 2020, Åre)

- All wind farms in the validations located in the same region as the training dataset.
- How well can WICE perform in other regions?

RES blind test in France

5 sites in southern France

<u>SCADA</u>

- 1 year per wind farm
- 78 turbines
- IEA Task 19 method used to estimate losses

Weather modelling

- WRF
- In-house setup
- 333m model grid resolution

Part 2: Validation results

Observed and modelled ice losses

	WF 1	WF 2	WF 3	WF 4	WF 5
Observed loss	4.6%	6.3%	0.5%	2.5%	5.4%
WICE loss	4.0%	3.9%	2.5%	3.1%	3.4%
OEM	А	В	С	А	D
Shut down for ice risk	No	Yes	No	No	Yes

- Good agreement for WF 1 and WF 4
- Modelled losses underestimated for WF 2 and WF 5
- Modelled losses overestimated for WF 3

Questions addressed in detailed analysis:

Can we explain the under and over estimations?

Can WICE be updated to correctly predict these in future?

WF 2 analysis

- Good agreement for all but two turbines.
- Observed losses much higher than modelled for these two turbines.
- Ice shutdown procedure for these two turbines are more restrictive than for the other ones.

WF 2 analysis – WICE modified to capture additional shutdown

• Modelling assumption: Ice detector on hub for measuring icing intensity. Turbine shut down when the modelled ice growth on an ISO standard cylinder at hub height exceeds a given limit.

Observed and modelled ice losses

10 g/hour	WF 2	15 g/hour	WF 2	20 g/hour	WF 2		
Observed loss	6.3%	Observed loss	6.3%	Observed loss	6.3%		
WICE loss	3.9%	WICE loss	3.9%	WICE loss	3.9%		
WICE incl. shut down	6.1%	WICE incl. shut down	5.9%	WICE incl. shut down	5.6%		
Best choice when considering losses on both turbine and wind farm level							

WF 3 analysis

- Gaps between SCADA data and WICE tool for WF 3 couldn't be explained in RES analysis
- One possible explanation is that the turbine type in WF 3 is less sensitive to ice than the turbine types in neighbouring wind farms included in the analysis.

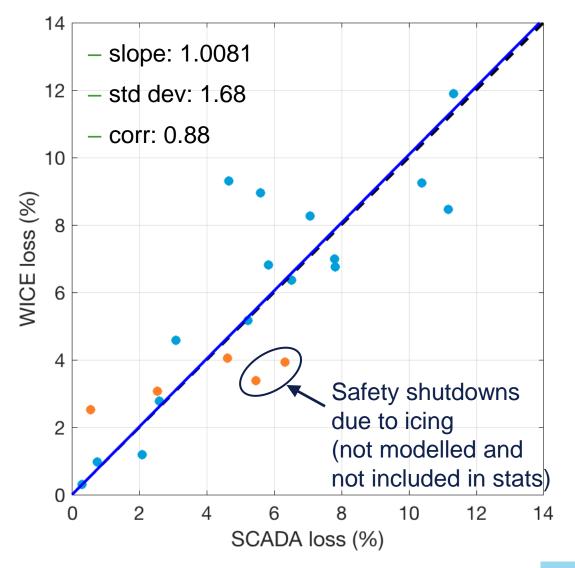
WF 5 analysis

- Wind turbines are equipped with blade ice detection system
- Turbines are shut down when "too much ice on the blades" is detected
- A larger intra-farm variability in observations compared to model results

WF 5 analysis – WICE modified to capture additional shutdown

• Assumption: Blade ice detector. Turbines are shut down when the modelled ice load on a simplified turbine blade exceeds a threshold (calculated for each individual turbine).

Observed and modelled ice losses


	WF 5
Observed loss	5.4
WICE loss	3.4
WICE incl. shut down	5.2

- Many uncertainties on the operational characteristics of the ice detection system.
- No access to time series from blade ice detection system.
- Same settings for all turbines?
- There is a potential for modelling the blade ice detection system but more data is required.

Internal validation and RES Blind Tests

- Internal validation, 10 wind farms located in Scandinavia (Winterwind 2019, Umeå)
- Blind test for RES, 5 wind farms in Sweden (Winterwind 2020, Åre)
- Blind test for RES, 5 wind farms in France

Part 3: Summary

Summary

- Modelled and observed losses agree well for 2 wind farms (WF 1 and WF 4)
- For one wind farm the agreement is good for all but two wind turbines (WF 2)
 - The differences can be explained by shut downs due to safety rules in icing conditions
- For one wind farm the modelled losses are underestimated (WF 5). Difference can be explained by:
 - Blade ice detection system installed
 - Turbines are shut down when "too much ice on the blades" is detected
- For one wind farm the modelled losses are overpredicted (WF 3)
 - Possible explanation is that the turbine type is less sensitive to ice than the turbine types in neighbouring wind farms

Conclusion

- Scatter plot shows that the modelled wind farms in France fall within the scatter from previous validations
- When assessing the icing model performance it is essential to understand the wind farm turbine operation strategy in order to make a fair comparison
- There is a potential for modelling turbine shut down due to ice detectors or blade ice detection systems, but more data is required

WHEN TRUST MATTERS

DN

Thanks for listening

Stefan Söderberg

stefan.soderberg@dnv.com

www.dnv.com

19 DNV ©