

TRiceR, a cloud-based web application for supporting risk-based decisions associated with ice falling from wind turbine blades

Winterwind conference - 20 Apr 2021

CONFIDENTIAL

Case study

Frank Vandewillebroek Site security manager

Seifert formula • $Distance = v_{wind} * height/15$

Risk-based approach

- Definition of set of possible scenarios
- Calculate risk as product of
 - Probability
 - Exposure
 - Damage
- Compare value with risk
 acceptance framework

175600

175700

MCA - IRPA approach - Societal risk level (no background risk)

© 2020 TRACTEBEL ENGINEERING S.A.

X[m]

175800

175900

176000

TRiceR – Different use cases, different time horizons

Development

- Long term
- Ice fall risk over life time of wind turbine
- Average meteorological conditions over time span
- Part of the development track
- 'One shot' if no changing conditions
- Support for defining long term mitigation measures

Operation

- Short term
- Ice fall risk for next day, next week
- Measured or forecasted conditions
- Assessment for each ice fall event
- Mitigation measures based on actual conditions.

Within the engine...

TRiceR – Risk-based approach

• Is risk level acceptable?

• What can we do about it?

TRACTEBEL

TRiceR – Risk-based approach

Risk analysis

Probability – Fall movement

PUBLIC

Wind speed & direction

• Long-term wind data

• < 5°C

 Take into account <u>all</u> wind speeds & frequency of directions!

Fragment mass

- From literature
 - Weibull distribution
 - Average mass 360 g
 - 95% of fragment < 1 kg

Fragment ice type

• Depending on temperature and (relative) wind speed

Type of ice	Density	Adhesion and cohesion	General appearance	
	kg/m ³		Colour	Shape
Glaze	900	strong	transparent	evenly distributed/icicles
Wet snow	300 to 600	weak (forming) strong (frozen)	white	evenly distributed/eccentric
Hard rime	600 to 900	strong	opaque	eccentric, pointing windward
Soft rime	200 to 600	low to medium	white	eccentric, pointing windward

Ice fall model – Model parameters

Fragment shape and dimensions

- Thin platesDimensions 'normally'
 - distributed with high std.

Fragment angle of attack (AoA)

- Important for drag and air resistance.
- Random between 0° & 90°

Fragment starting position

Total ice mass

- Turbine perpendicular to wind direction (if not positioned).
- Ice accretion on blades
- Depends on:
 - Environmental conditions
 - Ice type
 - Operation of turbine
 - Duration
- Lamraoui model

PUBLIC

Probability – Monte Carlo process

Damage – Damage model

- Damage = Lethality
- Not all fragments will be lethal.
- Weighted lethality rate through 3 probit functions.

Exposure – Coincidence of ice release and presence TRACTEBEL of person

 To have a risk at a location, fragment must fall on it, fragment must be able to do damage and ... somebody needs to be there.

- Ice fall day
- Ice fall release t_r
- Exposure time of individual t_p depends on use of location.

Risk acceptance framework – ALARP Principle

- With P, D & E risk level can be calculated.
- Compare to acceptance framework
 - Unacceptable region
 - Tolerable region
 - High attention
 - Low attention
 - Acceptable region
- In tolerable region: reduce risk As Low As Reasonable Practicable (ALARP)

Risk mitigation – How to reduce risk level

Turbine measures

 Rotor positioning, preventive shutdown, reactive shutdown, blade heating...

Environmental / Technical measures

• Construction of roof, protective nets, lights, static or dynamic signs, physical exclusion zones...

Organisational measures

• Communication, SMS warning system, manual removal, access time limitation, enforce PPE...

- Can be modelled in the analysis and the effects visualised!
- Difficulty: What parameters are affected?

Further info ?

Request a demo !

Digital product manager: Mr Xavier VANWIJCK – Xavier.Vanwijck@tractebel.engie.com Sales support: Ms Camilla SPINAZZI - saleswind.te@tractebel.engie.com Technical support: Mr Marc VAN DAMME - support.tricer@tractebel.engie.com

tractebel-engie.com/en/tricer

