TOWARDS IMPROVING WIND ENERGY IN COLD CLIMATE: HOW TO QUANTIFY THE USE OF ALTERNATIVE OPERATIONAL STRATEGIES

André Bégin-Drolet, ing., Ph.D. Patrice Roberge, Ph.D. candidate Jean Ruel, ing., Ph.D. Jean Lemay, ing., Ph.D.

Online edition, April 19-21, 2021

MY RESEARCH INTERESTS

Roberge et al. (2019) Field analysis, modeling and characterization of wind turbine hot air ice protection systems. Cold Regions Science and Technology 163 (2019) 19-26

MY RESEARCH INTERESTS

New spin-off company launched in November 2020 WWW.icetek.ca

THE WIND ENERGY MARKET 2019-2020

• Total installed capacity: 506 GW

0

- Onshore: 481 GW (95%)
- 95 GW/481 GW without valid GPS coordinates (assumed ice class 1)
- Cold climate (IEA ice class 2 or higher): 131 GW (between 27% and 34%)

IC >= 2

	Nb. of turbin	es	Installed capacity			
Canada	5 065		9 850 N	9 850 MW		
Europe	40 385		75 044	MW		
N. USA	21 498	21 498		37 573 MW		
IEA Ice class	Met. icing (% of year)	Inst. (% o	. icing f year)	Prod. loss (% of AEP)		
1	0-0.5 <		4 F	005		
•	0-0.5	<	1.5	0-0.5		
2	0-0.5	< 1	1.5	0-0.5 0.5-5		
2 3	0-0.5 0.5-3 3-5	< 1 6	1.5 I-9 -15	0-0.5 0.5-5 3-12		
2 3 4	0-0.5 0.5-3 3-5 5-10	1 6 10	1.5 -9 -15)-30	0-0.5 0.5-5 3-12 10-25		
2 3 4 5	0-0.5 0.5-3 3-5 5-10 >10	< 1 6 1(>	1.5 1-9 -15 0-30	0-0.5 0.5-5 3-12 10-25 >20		

THE ICING PROBLEM!

source: InnovWeek ENGIE

- Production losses;
- Excessive turbine loads;
- Health/safety issues.

Bégin-Drolet et al. (2018) The importance of accurate detection for turbine ice prevention systems. Winterwind international conference 2018

WHAT IS AN ALTERNATIVE OPERATIONAL STRATEGY?

- Ice Protection Systems (IPS);
- Rubber boots;
- Expulsive de-icing;
- Icephobic coatings;
- Operation with ice;
- Retrofit hardware;

. . .

Source: https://www.enercon.de/fileadmin/Redakteur/Medien-Portal/windblatt/pdf/en/wb_01-2011_en.pdf

Source: borealiswind.com/how-it-works

1st step: good modelling of turbine expected behaviour;

$$P(v) = \begin{cases} 0 & \text{if } v < v_{ci} \\ P_5(v) & \text{if } v_{ci} < v < v_r \\ P_r & \text{if } v_r < v \end{cases}$$

1st step: good modelling of turbine expected behaviour;

Example data set presenting the binned data divided in wind speed and temperature (in °C) ranges in a situation where the wind speed is :

- a) not corrected with temperature
- b) Corrected using traditional approach
- c) Corrected using new approach

Roberge et al. (2021), under review

1st step: good modelling of turbine expected behaviour; 2nd step: ability to identify/classify events;

0

1st step: good modelling of turbine expected behaviour; 2nd step: ability to identify/classify events;

0

3rd step: select control turbine and reference turbines to test the AOS;

1st step: good modelling of turbine expected behaviour;
2nd step: ability to identify/classify events;
3rd step: select control turbine and reference turbines to test the AOS;
4th step: select appropriate metrics (figure of merits);

Traditionnal metrics:

- The energy production difference (ΔE_{AB});
- The energy loss difference (ΔEL_{AB});
- The energy efficiency difference (ΔEE).

New proposed metrics:

11

- The energy gain (G_{AB});
- The potential recovery.

From our experience, accurate metrics should be independent of the selected period (if no new icing losses are added) and metrics should have low sensitivity to the wind differences between the two turbines under evaluation.

MATHEMATICAL DEFINITION OF METRICS

$$\Delta E_{AB} = E_{prod_A} - E_{prod_B}$$

$$\Delta E L_{AB} = E_{loss_B} - E_{loss_A}$$

$$E_{loss} = E_{avail} - E_{prod}$$

$$\begin{aligned} G_{AB} &= \int (PE_A - PE_B) P_{avail_A} dt^* \\ PE &= \frac{P_{prod}}{P_{avail}} \end{aligned}$$

$$\Delta E E_{AB} = E E_A - E E_B$$
$$E E = \frac{E_{prod}}{E_{avail}}$$

$$PR_{BA} = \frac{-1 \cdot G_{BA}}{E_{loss-B}^*}$$

	E _{available} [MWh]	E _{produced} [MWh]
Turbine A	129.6	19
Turbine B	175.1	17.4

Period	∆E [MWh]	∆EL [MWh]	∆EE [%]
CS1	1.6	47.1	4.7%

Roberge et al. (2021), under review

	E _{available} [MWh]	E _{produced} [MWh]
Turbine A	202.8	97.8
Turbine B	249.7	90.7

Period	∆E [MWh]	∆EL [MWh]	∆EE [%]	
CS1	1.6	47.1	4.7%	
CS2	7.1	54	11.9%	C

y 2 (CS2)	Case study 2				/ 1 (CS1)	Case study	
E _{produced} [MWh]	E _{available} [MWh]			oroduced VIWh]	E, [l	E _{available} [MWh]	
97.8	202.8	urbine A	Т	19		129.6	Turbine A
90.7	249.7	urbine B	Т	17.4		175.1	Turbine B
happen if AOS of turbine pplied to turbine B?	What would hap A was appl		How much more energy is produced by turbine A if turbine B was experiencing the same wind as turbine A.				
	PR] [%]	G [MWh]	∆EE [%]	∆EL [MWh]	∆E [MWh]	Period	
	4.2%	4.1	4.7%	47.1	1.6	CS1	
0	4.6%	4.7	11.9%	54	7.1	CS2	
[MWh] 97.8 90.7 happen if AOS of turbine pplied to turbine B?	[MWh] 202.8 249.7 What would hap A was appl PR [[%] 4.2% 4.6%	urbine A urbine B	T T roduced by periencing ne A. AEE [%] 4.7% 11.9%	MWh] 19 17.4 e energy is p bine B was ex wind as turbi AEL [MWh] 47.1 54	Iow much mor urbine A if turb the same AE [MWh] 1.6 7.1	[MWh] 129.6 175.1 Hc tu Period CS1 CS2	Turbine A Turbine B

Case study 3 (CS3) 9-day event

Project in collaboration with Borealis Wind

- Experimental turbine equipped with Borealis Ice Protection System.
- Turbine 1-2-3 left in normal operation (no IPS).
- Turbine rated power normalized to 3MW to preserve confidentiality in the data.

Turb.	E_{Avail}	E_{Prod}	E_{Loss}	ÊE
	[MWh]	[MWh]	[MWh]	[%]
Exp.	414.2	273.1	141.0	0.66
C. 1	404.4	91.4	312.7	0.23
C. 2	361.1	117.6	243.8	0.32
C. 3	342.4	116.6	225.7	0.34

	0			Case st	udy 3 (CS3)	Mind Speed		0 -5 -10
Tu	rb.	E_{Avail} [MWh]	E_{Prod} [MWh]	E_{Loss} [MWh]	EE [%]	100 v− 100 v− 100 v− 100 v−		1 % WWW 1 KWW 2.0-
Ex	p.	414.2	273.1	141.0	0.66	0	$\lambda \sim$	S 0
C.	1	404.4	91.4	312.7	0.23	0.6- ლ_		- ³⁰⁰ Ē
С.	2	361.1	117.6	243.8	0.32	<u>5</u> 0.4		- 200 드 · 것
C.	3	342.4	116.6	225.7	0.34	S0.2	hatal	
						0	24 48 7	2 96 120 144 168 192 216 Time [h]
Period		ΔE	ΔEL	ΔEE	RILR	G	PR	Roberge et al. (2021), under review
	۸]	/Wh]	[MWh]	[%]	[%]	[MWh]	[%]	0
C1	1	81.7	171.7	43	56	176.1	56	
C2	1	55.5	102.8	34	50	157.7	56	
C3	1	56.5	84.7	32	48	148.0	54	0

Case study 3 (CS3)

Turb.	E_{Avail}	E_{Prod}	E_{Loss}	EE
	[MWh]	[MWh]	[MWh]	[%]
Exp.	414.2	273.1	141.0	0.66
C. 1	404.4	91.4	312.7	0.23
C. 2	361.1	117.6	243.8	0.32
C. 3	342.4	116.6	225.7	0.34

How would the reference turbines behaved if the AOS was applied?

ΔE	ΔEL	ΔEE	RILR	G	► PR	
[MWh]	[MWh]	[%]	[%]	[MWh]	[%]	136.5 MWh
181.7	171.7	43	56	176.1	56	
155.5	102.8	34	50	157.7	56	121 9 MWh
156.5	84.7	32	48	148.0	54	
	Δ <i>E</i> [MWh] 181.7 155.5 156.5	$\begin{array}{ccc} \Delta E & \Delta EL \\ [MWh] & [MWh] \\ 181.7 & 171.7 \\ 155.5 & 102.8 \\ 156.5 & 84.7 \end{array}$	ΔE ΔEL ΔEE [MWh][MWh][%]181.7171.743155.5102.834156.584.732	ΔE ΔEL ΔEE RILR[MWh][MWh][%][%]181.7171.74356155.5102.83450156.584.73248	ΔE ΔEL ΔEE RILRG[MWh][MWh][%][%][MWh]181.7171.74356176.1155.5102.83450157.7156.584.73248148.0	ΔE ΔEL ΔEE RILR G PR [MWh] [MWh] [%] [%] [MWh] [%] 181.7 171.7 43 56 176.1 56 155.5 102.8 34 50 157.7 56 156.5 84.7 32 48 148.0 54

Case study 3 (CS3)

Turb.	E_{Avail}	E_{Prod}	E_{Loss}	EE
	[MWh]	[MWh]	[MWh]	[%]
Exp.	414.2	273.1	141.0	0.66
C. 1	404.4	91.4	312.7	0.23
C. 2	361.1	117.6	243.8	0.32
C. 3	342.4	116.6	225.7	0.34

How would the reference turbines behaved if the AOS was applied?

175 1 NAVA

Period	ΔE	ΔEL	ΔEE	RILR	G PR	
	[MWh]	[MWh]	[%]	[%]	[MWh] [%]	136.5 MWh
C1	181.7	171.7	43	56	176.1 56	
C2	155.5	102.8	34	50	157.7 56	121 9 MWh
C3	156.5	84.7	32	48	148.0 54	

CONCLUSION AND PERSPECTIVES

- Guidelines are important but data analysis is crucial.
- Gains can be quantified through appropriate analysis.
- Look a your data (or have someone look at them for you)!

Contact information

André Bégin-Drolet, ing., Ph.D. Professor – Université Laval andre.begin-drolet@gmc.ulaval.ca

1065 ave de la médecine Québec (Québec) G1V 0A6 Tél. : +1 418 656-2131 x403271

MERCI THANK YOU TACK

Meteorological Conditions Monitoring Station (MCMS) Technology licensed to icetek <u>www.icetek.ca</u> info@icetek.ca

0 to 50 m/s	± 0.5 m/s (0 to 15 m/s) ± 4 % (>15 m/s)
0 to 360°	±4°
-40 to 60 °C	± 0.1°C (-18°C to 30°C) ± 0.5°C (else)
0 to 100 %	± 3 % RH
30 to 110 kPa	± 0.1 kPa
0 to 1800 W/m ² \pm 5 %	
Typ. 0 to 1 g/m	3
Typ. 0 to 10 g/(sm ²)	
mm	
glaze, soft rime	, hard rime
on/off	
on/off	
on/off	
	0 to 50 m/s 0 to 360° -40 to 60 °C 0 to 100 % 30 to 110 kPa 0 to 1800 W/m Typ. 0 to 1 g/m Typ. 0 to 10 g/(mm glaze, soft rime on/off on/off on/off