

Development and calibration of state-of-the-art icing loss estimates using a new meteorological dataset.

Øyvind Byrkjedal, Johannes Lindvall, Leon Lee, Simo Rissanen

The IceLoss 2.0 project

- Overall goal: To increase the knowledge of production losses due to icing and to develop a next generation lceLoss model that will provide wind power project stakeholders with better estimates of the production losses due to icing on the turbine blades
- Total budget: 2.6 MSEK
- Funded by: Swedish Energy Agency, Kjeller Vindteknikk, Park Owners
- January 2018 March 2020
- Link to final report

	SLUTRAPPORT	1 (34
Eneraimyndiaheten	Detum 2020-03-31	2017-008207
(C ==== g== y=== g====		Projektor
		44991-1
Energimyndighetens tiel på projektet – svenska IceLoss 2.0 – detaljerade beräkningar :	av islaster och produktionsför	luster till
följd av dessa på vindkraftverk		
IceLoss 2.0 – detailed calculations of i losses on wind turbines	ce loads and the associated pr	oduction
Universitethögskola/företag Kjeller Vindteknikk AB	Avdelning/institution	
Adress Hantverkargatan 5K, c/o Norconsult	•	
Nemo på projektiedere Johannes Lindvall		
Namn på ev övriga projektdeltagare Leon Lee		
Nyckelon: 5-7 at Cold climate Wind nonver Loing work	action losses. Ice modelling 1	Viecoscale
modelling	action rosses, ice modeling, i	resoscale

The IceLoss 2.0 development/model chain

IceLoss 2.0 SCADA ice loss database

24 Windfarms				
# 400 WTGs	Wind farms	Min	Median	Max
2000 WIG years	Elevation	0	250	600
Turbines from 4	Period analyzed [years]	1	4	8
OEMs	# WTGs	1	17	>30
Sweden, Finland,	Historical annual ice hours	<200	600	>1400
Norway	Historical Ice loss [%]	< 1	3	> 10
No ice protection systems				

Cloud condensate lifting and sheltering effect

WRF 3 km grid box

Cloud condensate sheltering effect

- Quantify cloud water reduction with hi-res WRF simulations (333 m).
- Multiple transect on different locations.

Cloud condensate sheltering effect

 A cloud water reduction function is made to correct for sheltering effect not resolved in the main weather model

R

Cloud condensate sheltering effect

- Quantify cloud water reduction with hi-res WRF simulations (333 m).
- Multiple transect on different locations.

dh

 A cloud water reduction function is made to correct for sheltering effect not resolved in the main weather model

 Cloud reduction factors for each WTG derived from WTG position and high-res topography data

Wind farm internal variability of ice losses

BIAS CORRECTED METRICS

	Intern. std [%]	r	RMSE
SCADA, 16.4 % loss	3.51		
Base case, Standard Cyl.			3.48

Wind farm internal variability of ice losses

BIAS CORRECTED METRICS

	Intern. std [%]	r	RMSE
SCADA, 16.4 % loss	3.51		
Base case, Standard Cyl.			3.48
Individual z, Blade Cyl	2.22	0.88	1.86

Wind farm internal variability of ice losses

BIAS CORRECTED METRICS

	Intern. std [%]	r	RMSE
SCADA, 16.4 % loss	3.51		
Base case, Standard Cyl.			3.48
Individual z, Blade Cyl	2.22	0.88	1.86
Ind z, Blade Cyl, condensate sheltering	2.53	0.90	1.65

Calibration process

- Prior to calibration two windfarms are excluded from the SCADA ice loss database. Adjacent to industrial area and stopped occasionally for safety reasons
- Optimization on RMSE of individual WTGs' ice losses.
- Leave-one-out cross validation: To make maximum use of database but keep validation independant from calibration. Optimized power reduction matrix derived for each wind farm based the on remaining wind farms

IceLoss validation

Summary

- Local topography influence is important for the correct description of icing conditions. Both sheltering and exposure effects.
- Ongoing work to calibrate the model with new WRF dataset.

- Science based wind energy consulting
- Established 1998
- 31 employees
- Main office in Lillestrøm close to Oslo
- Other offices: Espoo, Stockholm, Stavanger and Kópavogur
- Main markets: Norway, Sweden and Finland
- Since 2019 a part of Norconsult

Wind energy

Power lines

Bridges

Airports

