On-site estimation of effective liquid water content

Patrice Roberge, Jean Lemay, Jean Ruel, André Bégin-Drolet Université Laval, Québec, Canada

LWC, icing severity, icing rate, what is the difference?

LWC: Density of droplets [g/m³]

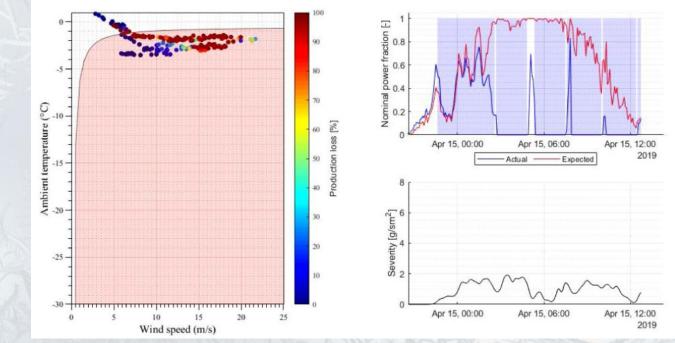
LWC

LWC, icing severity, icing rate, what is the difference?

LWC :Density of droplets [g/m³]Icing severity : Droplet flux on a reference surface [g/(sm²)]

LWC, icing severity, icing rate, what is the difference?

LWC :Density of droplets [g/m³]Icing severity :Droplet flux on a reference surface [g/(sm²)]Icing rate :Rate of increase of ice mass [kg/(ms)]


Why should we measure LWC on-site ?

Why LWC ? Why on-site ?

Questions

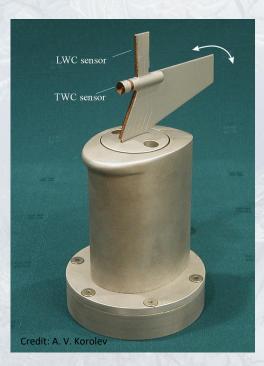
Why should we measure LWC?

- Better use Ice
 Protection Systems
- Understand what is happening on-site

Bégin-Drolet et al. (2020), THE IMPACT OF LIQUID WATER CONTENT ON THERMAL ICE PROTECTION SYSTEMS EFFICIENCY, Winterwind 2020

Questions

Why should we measure it on-site ?


- Know what is happening in real time
- Weather predictions lacks accuracy for icing
- Intra-site variations

How LWC is typically measured

Mounted on airplanes

Mostly heat transfer solutions

Some droplet counting methods

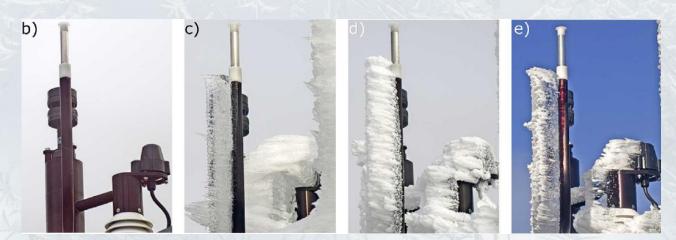
Challenge of measuring LWC on wind farms

Two main challenges:

- Robustness
- Great variability in meteorological conditions

Challenge of measuring LWC on wind farms

Robustness


- Countless examples of ice detector failings
- Lots of icing
- Low availability for maintenance or repairs

Challenge of measuring LWC on wind farms

Great variability in meteorological conditions

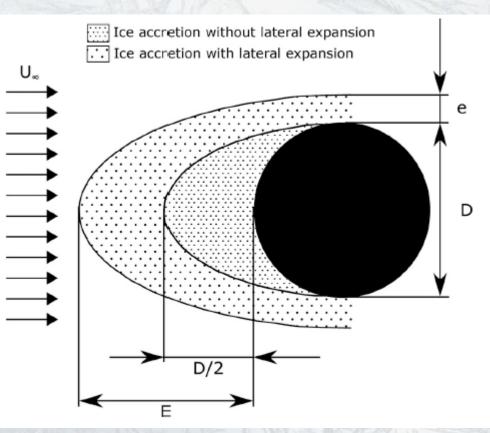
- Freezing rain, Wet snow, in-cloud glaze, hard and soft rime
- Mostly a problem for sensors measuring accretion properties

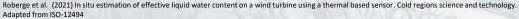
Roberge et al. (2019). Field analysis, modeling and characterization of wind turbine hot air ice protection systems. Cold regions science and technology.

Regaining trust in ice sensing

What are the two working instruments on this nacelle?

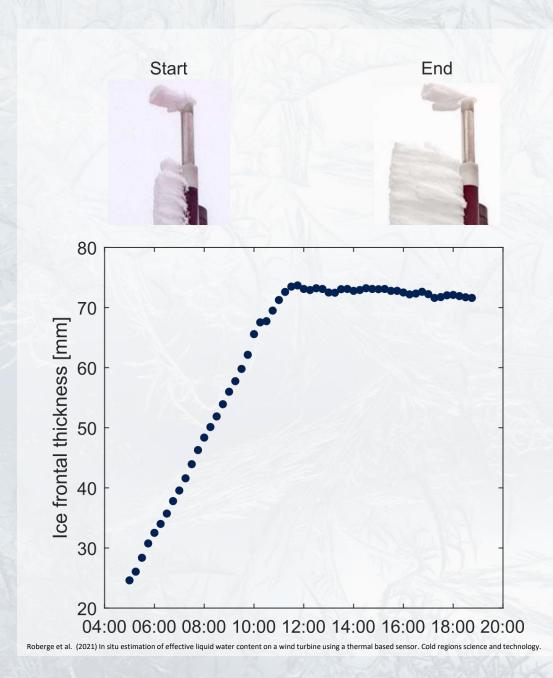
Regaining trust in ice sensing : The Camera


- The reference
- Pros: robust, easy to interpret, reliable observations
- Cons: low sensitivity, hard to get a good view at night



Bégin-Drolet et al. (2018), THE IMPORTANCE OF ACCURATE DETECTION FOR TURBINE ICE PREVENTION SYSTEMS, Winterwind 2020

Getting a LWC signal from the camera


- Reading ice frontal thickness over time
- Working back from icing rate to LWC
- Removing hysteresis from the measure

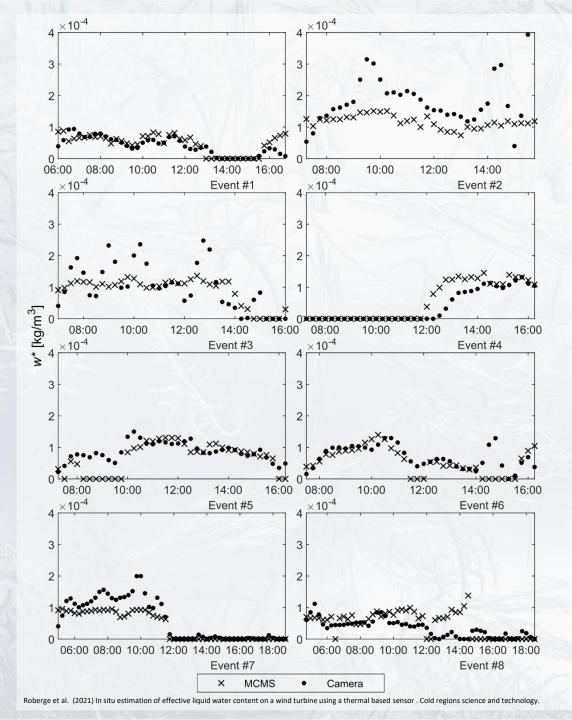
Example

- Simple algorithm
- Reference cylinder
- Accretion phase
- Sublimation phase

Validation of other ice sensors

As of today, the camera should be the baseline for validating ice sensing

- Compare accuracy
- Compare robustness
- Compare sensitivity


Case study : the MCMS

Thermal based approach

- Adaptation of the airborne heat transfer
 LWC sensors to the reality of wind farms
- **Direct** measurement of water in the air

MCMS vs. camera

- Only 8 events with thickness increase >10 mm that winter
- High coherence
- Accuracy : Comparable
- Robustness : Increased
- Sensitivity : Increased

Conclusion and perspectives

- Defining a single way to compare the numerous ice sensors
- LWC: a key ingredient to guide operational decisions
- Ongoing numerical simulations

Bégin-Drolet et al. (2018), THE IMPORTANCE OF ACCURATE DETECTION FOR TURBINE ICE PREVENTION SYSTEMS, Winterwind 2020