Performance Warranty Guidelines for Wind Turbines in Icing Climates

Summery of IEA Wind Task 19 report update

2021-04-19, Helena Wickman

Motivation

- Today: No international standard for performance testing of turbines in icing climates
- Task 19 considers wind turbine performance testing in icing climates as a key element to:
 - Mitigate risks in wind farm development in icing climate
 - → Decrease uncertainties in investments
 - Accelerating wind turbine technology improvements
 - \rightarrow Increase understanding of the performance and limitations
 - \rightarrow Increase incentive to optimize the Ice Protection System (IPS) and turbine operations

Task 19

Task 19

Project summary

Project group

- Helena Wickman, Vattenfall, Sweden
- Charles Godreau, Nergica, Canada
- Timo Karlsson, VTT Technical Research Centre of Finland
- Stefan Söderberg, DNVGL, Sweden

Project timeline

HT 2019-HT 2020

- A first guide to include the Ice Protection System (IPS) in a turbine procurement contract
- Showed that it is possible to guarantee and test the performance of an IPS in several ways
- Further detailing the most promising available warranty options and tested methods
- Moved towards fewer and standardized warranty options and test methods

Process

Year	Month	Activity
2019	July	Project started
	Feb	Winterwind 2020 workshop (36 participants: 8 countries, 27 organizations)
2020	June- Sept	Review of drafts by an external group from the workshop
	Oct	Final report ready for approval by IEA ExCo
2021	March	Report officially published

Summary of updates

7

1st version vs 2nd version

Table of Contents

1. Background	7		
2. Definitions	9		
2.1. Cold Climate	9		
2.2. Ice Protection Technology	. 10		
2.3. Ice Protection System	. 11		
2.4. Operational Strategy	. 11		
2.4.1. De-icing	. 11		
2.4.2. Anti-icing	.11		
3. Warranty options	. 12		
3.1. Turbine Performance warranty with IPS	. 12		
3.2. IPS Performance Warranty	. 13		
3.3. Warranty testing	. 13		
3.4 Documentation	13		
4. Test Methods	. 14		
4.1. Turbine Performance Test Methods with IPS	. 14		
4.1.1. Power Performance Test	. 14		
4.1.2. Side-by-Side Comparison Test	. 14		
4.1.3. Turbine Self-Comparison Test	. 15		
4.2. IPS Performance Test Methods	. 15		
4.2.1. IPS Ice Removal or Surface Temperature Test	. 15		
5. Risks	. 15		
References 17			

Table of Contents

1. Introduction			
1.1. Background			
1.2 Scope 9			
2. Definitions			
2.1. Cold Climate			
2.2. Cold Climate wind turbine			
2.3. Ice Protection System			
2.3.1. Ice Protection Technology			
2.3.1.1. Hot air heating			
2.3.1.2. Electro-thermal heating			
2.3.2. Ice detection method			
2.3.3. IPS operational strategy			
2.3.3.1. Anti-icing			
2.3.3.2. De-icing			
2.3.4. Other auxiliary equipment			
2.4. Turbine operational strategy during icing			
3. Warranty options17			
3.1. Availability warranty			
3.2. Performance warranty			
3.2.1. Turbine performance warranty in Icing Climates			
3.2.2. Ice Protection Technology performance warranty			
 Performance warranty guidelines			
4.1. Operational envelope			
4.2. Data selection and filtering			
4.3. Test methods			
4.3.1. Turbine self-comparison test			
4.3.2. Side-by-side comparison test			
4.3.3. Power performance Test			
4.4. Performance criteria			
4.5. Consequences			
4.6. Risks			
References			
Appendix A - Performance Criteria Calculation Example			

Warranty options

Turbine performance

 Warranty that provides coverage for energy production during icing

Ice Protection Technology performance

- Warranty that focus on the functionality of the IPT
- Recommended as validation of the IPT design envelope and specifications

Basic warranty document

- Defined **Operational Envelope** for which the warranty is valid
- Defined data selection and filtering
- Clearly defined and warranted performance criteria
- **Methodology** for measuring the Performance Criteria within the Operational Envelope
- Consequences based on the result of the test

Operational envelope

- The performance of a wind turbine in IC shall be warranted within a clearly specified operational envelope
 - Design envelope of the IPS
 - Determine when it is suitable to conduct the performance test and how to filter the data
- There needs to be an overlap with the local site conditions!

Data selection and filtering

Duration of test

- time period, number of ice events or number of icing hours
- Required data coverage of the test
 - Untested conditions, gaps in data
- Exclusions
 - non-icing-related faults, maintenance periods, data outside of the OE
- Icing event definition
 - detector, pc deviation
- Reference and test datasets

Task 19

Test methods

- Self-comparison test
- Side-by-side comparison test
- Power performance test

Guidance on:

- Choice of test turbines
- Data collection and processing
- Performance criteria
- Advantages, disadvantages

Performance criteria

- Two equations that can be used in combinations with the test methods
- Examples on how they work and what the difference between them are

Equation 1 - Performance criterion that calculates the maintained energy

$$\frac{E_{A,IPS}}{E_{P,IPS}} \ge Warranted \ percentage$$

Equation 2 - Performance criterion that calculates the recovered energy.

$$\frac{\left(\frac{E_{A,IPS}}{E_{P,IPS}} - \frac{E_{A,No\ IPS}}{E_{P,No\ IPS}}\right)}{\left(1 - \frac{E_{A,No\ IPS}}{E_{P,No\ IPS}}\right)} \geq Warranted\ percentage$$

Summary

- A second step towards standardization
- More focus on turbine performance
- More details and practical guidance
- Remaining challenges
 - Uncertainties
 - More field studies needed

Standar

