DNV·GL

Advanced operational analytics with machine learning

Will Jowitt Renewable Energy Analytics, DNV GL

Contents

- Power curve performance analysis
 - Turbine blade icing loss
 - Machine learning labelling tool
- Data Mining
 - Turbine Degradation study
- Drivetrain Integrity Monitoring
 - New machine learning approach

Turbine Blade Icing Loss

Photo: Kent Larsson, ABVEE

- **Blade icing** is the cause of large production losses through the winter months for many wind farms in the Nordics.
- Identifying and consistently labelling ice affected production is very time consuming to do accurately
- We have received a lot of interest surround **IPS warranty reviews**
- SCADA data enables us to see how effective the systems are at maximizing performance during icing conditions.
- These analyses require a large amount of data from multiple wind farms under varied conditions in order to provide credible results.

Power Curve Performance Analysis

- SCADA analysis is essential for good analysis of turbine performance.
- Labelling performance issues accurately is time consuming and susceptible to human error
- Much of the effort in performance assessments are driven by SCADA analysis section of the work
- Labelling the data using simple logical filters is prone to errors as they miss the nuances in the data and legitimate differences between turbines
- Old automatic labelling models also fail to identify new performance issues

Machine Learning Labelling Tool

- A training dataset is prepared for each wind farm analysed by manually labelling a subset of the SCADA data from the wind farm
- Normalisation of power curves is necessary to create a consistent training dataset – this greatly improves the predictive performance across the wind farm
- The normalised data is used to train a convolutional neural network

- Time is considered when training the model in order to capture downtime/performance events
- The model is then used to label the remaining data from the wind farm – provided the training data was high quality the model produces consistent results efficiently

Example: Turbine Blade Icing Loss

DNV.GL

Example: Turbine Blade Icing Loss

Machine learning labels

		Predicted		
		Blade icing	No icing	
Actual	Blade icing	86.0%	14.0%	
Act	No icing	0.3%	99.7%	

- The model applies the learned flags with **high precision**
- Minimal manual flagging is required which can be carried out when checking the results

600+ Windfarms, 6,000+ turbines and 20,000+ turbine years

- 50 GW of operating wind and solar plant data
- A suite of data mining tools can be used for analysis of the entire portfolio.
- 'Big questions' can now be tackled efficiently using analytical methods
- What questions would you ask 50 GW-worth of data?

Data Mining Methodology

- 'InFLOWS' universal SCADA data ingest tool improving efficiency and standardising data.
- ML Flagging tool to speed up data labelling.
- Storage of standardised, cleaned and labelled datasets in Veracity data container.
- Data mining of Veracity data using Azure Databricks.

Example: Turbine Degradation Study

 Assumed turbine degradation rate is an important input to an energy assessment of a wind farm – with a loss ranging from 1.0% to 1.3% over 20 years.

This study confirmed our assumptions

 More work is being done to investigate how projects located in the Nordic region align with our turbine degradation assumptions

Year	Loss	WF_count	Turb_count	Std
2	0.02	241	6516	1.7
3	0.48	167	5362	1.37
4	0.27	98	3422	1.93
5	0.42	68	2996	1.12
6	-0.86	51	2484	1.17
7	-1.23	35	2333	1.18
8	-0.18	12	262	0.54
9	-0.19	7	74	0.69
10	-0.54	4	26	1.63
11	-1.92	3	17	2.37
12	-1.63	2	6	1.4

Drivetrain Integrity Monitor

- One of the six modules contained within WindGEMINI
- Failure detection algorithm that uses existing 10-minute SCADA data
- Based on trending of the temperature signals from the wind turbine drivetrain
- The assumption is that an increase in temperature is indicative of dissipation caused by an anomaly
- No additional sensors are required

Machine Learning Approach

- A period of normal operation is used to establish an expected relationship between input signals (power, ambient temperature, rotor speed) and the drivetrain temperatures being monitored
- The model is used for ongoing monitoring of the real temperatures
- Frequency domain filtering reduces noise and the impact of step changes (e.g. following sensor replacements), reducing the number of false positives

A weighting function automatically assigns a gravity to the alerts

Case study – October 2017

- In March 2017 a 2MW turbine experiences a gearbox failure
- WindGEMINI identifies an anomaly following the return to service
- Investigation showed one of the replaced components was defective
- Further analysis showed this was also having an effect on power curve efficiency (~94%)
- Issue was raised with the OEM and rectified, with an increase in performance and avoiding the risk of another failure and claim

Thank you

Will Jowitt

will.jowitt@dnvgl.com +4420 3816 6816

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

DNVGL