

Nordex Group Advanced Anti-Icing System for N149

Winterwind Conference, February 2020, Konrad Sachse

Agenda

Design goals Advanced Anti-Icing System for N149

PERFORMANCE

AVAILABILITY

MAINTENANCE COST

COST OF ENERGY

\$

WELL PROVEN CONCEPT

NAMORA

Basic features:

- Electrical resistance heaters
- No additional components in/on blade – except connections at blade root
- Low energy consumption heating the surface rather than structure
- Fully operational during turbine operation

Functional Tests Successful

Field Validation

High resolution infrared imaging during standstill

- Reliable quality of suppliers and manufacturing process
- Higher temperatures towards the blade tip as designed

High resolution infrared imaging during turbine operation

- Equal temperature along blade length
- Avoidance of ice accretion towards trailing edge

CFD-Calculation during turbine operation

Heat transfer coefficient α : defines the amount of heat that is transferred from the blade into the air flow, "cooling" the blade

Comparison of CFD-Calculation and measured Data

- Calculated behaviour of heat transfer coefficient is reproduced in the field measurements
- Higher scattering of values at the tip due to more turbulent air flow

Comparison of CFD-Calculation and measured Data

Heat transfer coefficient calculated from infrared images Heating design successfully validated Blade 2 Blade 3

• Calculated behaviour of heat transfer coefficient is reproduced in the field measurements

• Higher scattering of values at the tip due to more turbulent air flow

Excursion: Some thoughts about warranties

Talking about warranties for ice prevention systems

Ice Loss Recovery? Power Curve?

Talking about warranties for ice prevention systems

There are different types of warranties... ... and even more ways to validate them!

WHAT DOES THAT MEAN?

Ice Loss Recovery? Power Curve?

Warranted Ice Loss Recovery Rate

Ice loss:lost energy production due to icingIce lossrecovery rate:recovery rate:regained portion of the ice loss

ASSUMPTIONS

- Site with 5 % ice loss
- Warranted Ice Loss Recovery Rate of 80 %

RESULTS

- Ice loss reduced from 5 % to 1 %
- > Calc. AEP: 99.0 %

Warranted Power Curve during icing conditions

ASSUMPTIONS

- Site with 5 % ice loss
- Warranted Power Curve of 80 % during icing conditions

RESULTS

Case 1: > Calc. AEP: $\frac{720 h * 80 \% + 8040 h * 100 \%}{8760 h} = 98.4 \%$ > Ice loss reduced from 5 % to 1.6 %

> Ice loss reduction rate: $1 - \frac{1.6\%}{5\%} = 70\%$

Case 2:

- > Calc. AEP: $\frac{240 h * 80 \% + 8520 h * 100 \%}{8760 h} = 99.5 \%$
- Ice loss reduced from 5 % to 0.5 %
- ► Ice loss reduction rate: $1 \frac{0.5 \%}{5 \%} = 90 \%$

Warranties for blade heating systems

CONCLUSION

- Clarify what you are talking about
- You can convert one variant into the other (ice loss & icing hours required)
- Both variants have advantages and disadvantages regarding validation
- There are probably more ways to provide warranties
- Implementation of standards could help the industry

NORDEX reliable solutions for icing sites since 2010

