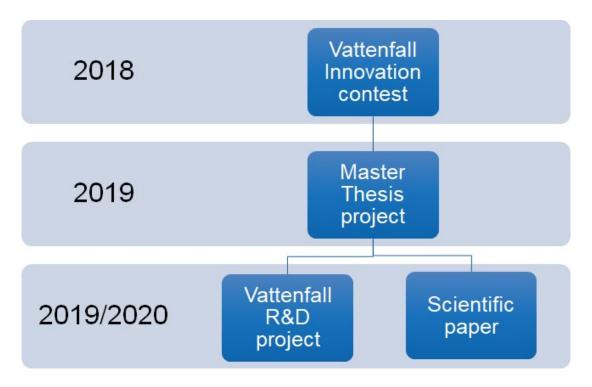
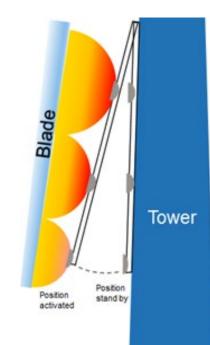
Experimental investigation of an infrared de-icing system for wind power application in cold climate

WinterWind 2020


Jennifer Pettersson & Sofia Sollén

February 4

29/01/2020 Confidentiality – None (C1)


Background

Infrared de-icing system

Why research on a new de-icing system?

Setup and experiments

Setup and indoor testing facility

Setup and indoor testing facility

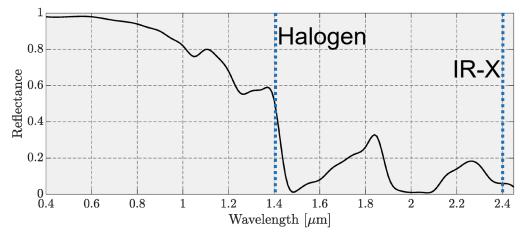
	Indoor testing facility
Location	Piteå, Arctic Falls
Area	10 000 m ²
Ambient temperature	-8 °C
Humidity	High
Snow machines	TechnoAlpin AG 500 litre/hour, 3kW

Setup and indoor testing facility

	Equipment
Thermal camera	Testo 875i, -30 °C to +100 °C
Load cell	Anyload, 5 to 300 kg
Analog input module	National Instruments, NI-9219

Infrared heaters

	Halogen	IR-X
Manufacture	Opranic	Opranic
Filament material	Tungsten	NiCr
Filament temperature	2 000 °C	1 000 °C
Wavelength peak	1.4 µm	2.4 µm
Input power	2.6 kW	2.6 kW



IR-X

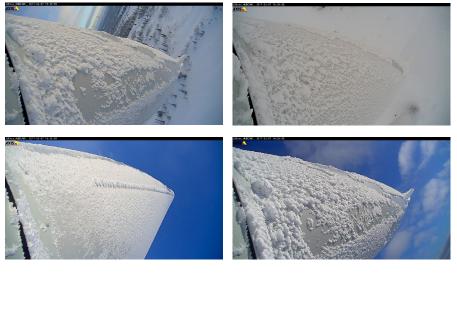
Infrared heaters

Reference: Nolin AW, Dozier J. A hyperspectral method for remotely sensing the grain size of snow. Remote Sensing of Environment 200;74:207-216.

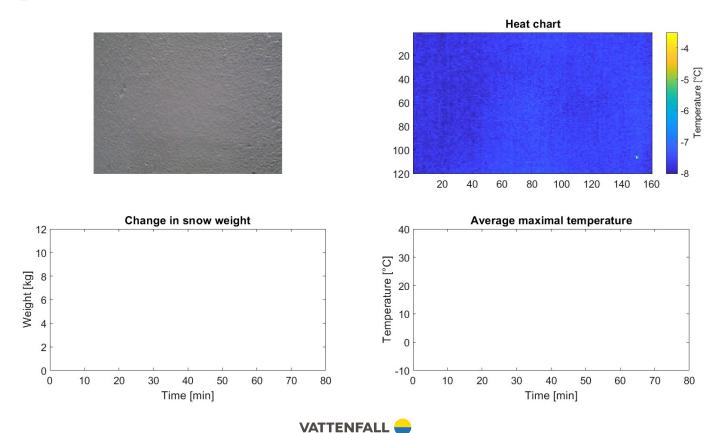
IR-X

Blade section

	Blade section	
Size	2 x 1.2 m	
Weight	87 kg	
Material	Fibre glass	
Coating	Mankiewicz's gel coat	
Origin	Offshore wind farm in Denmark	



Simulated soft rime ice



Iced wind turbine blade

Experimental results

Conclusions and future work

Future work

- Scientific paper, LTU
- Ongoing research project at Vattenfall
 - New special designed infra heaters from Opranic
 - Outdoor testing in windy conditions
 - Increased distance between heater and blade, 3 m
 - Faster de-icing
- Tests on a real wind turbine

Challenges and implementation

- Installation and maintenance
 - Need of de-icing of the de-icing system
- Work environment and environmental questions
- Be competitive or even better than existing de-icing systems
- Significant cheaper
- Integrated with existing control system
- Oscillating blades
- Overheating blade
- Affecting the bird life

