

Cost of Uncertainty in project development

Winterwind 2020-02-04, Jenny Longworth, Ville Lehtomäki

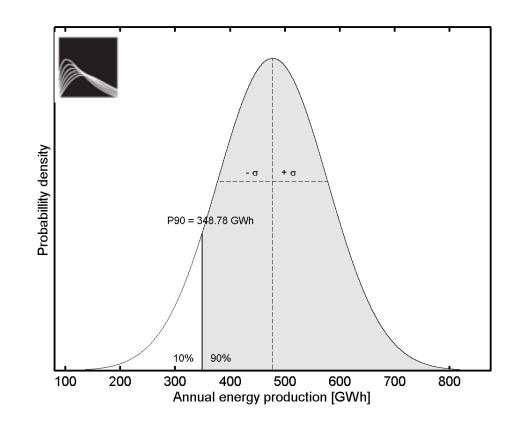
Kjeller Vindteknikk

Owned by: Norconsult

- High expertise within meteorology, measurements and wind energy
- Established 1998
- 32 employees
- Offices: <u>Lillestrøm</u>, Stockholm, Espoo
- Main markets: Norway, Sweden and Finland

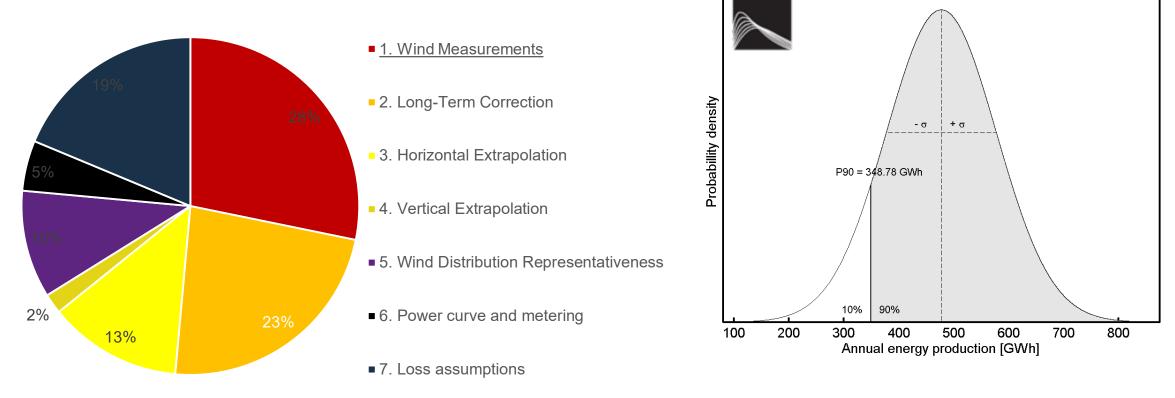
Wind energy

Power lines



Bridges

Background

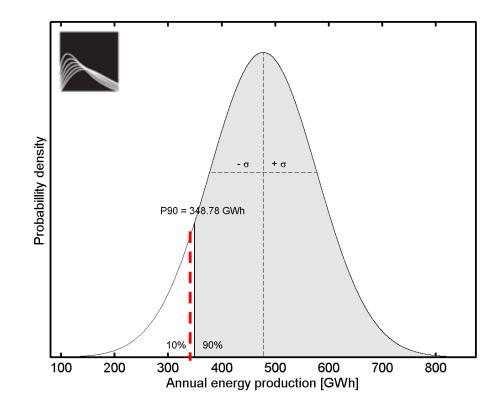

- Banks and investors use P90 for AEP, this is lower than typical long-term median value of AEP P50
- AEP uncertainty increase causes P90 to decrease
- Challenge: P90 available very late in project development often near financial close
- How to minimize uncertainties efficiently as early as possible?

Background

Typical AEP uncertainty sources

Today - focus on wind measurement!

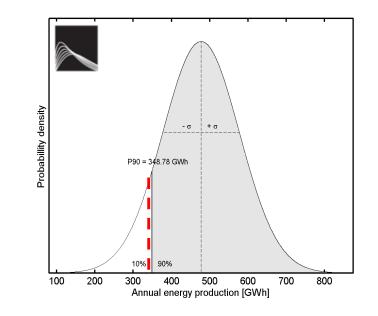
Examples of Wind Yield Assessment Uncertainties


Wind measurement	Wind uncertainty	Total AEP Unc (20 years)	
High quality met mast > 1 yr	2-3 %	9-11 %	
Low quality met mast > 1 yr	3-4 %	12-15 %	
High quality Sodar installation > 1 yr	3-5 %	14-15 %	
Low quality Sodar installation > 1 yr	6% and upwards	18 % and upwards	
Mesoscale model (eg WRF)	5-10 %	15-20 %	

Good mast best! - Modelled wind competitive vs bad Sodar

Assumptions - Cost of Uncertainty Calculations

- Performed by big Nordic equity investor
- Analysis of historical transactions:
 - Debt sizing on P90
 - Mean of EYAs + 1% uncertainty -> decrease debt (banking model)
 - Neutral Internal Rate Return (IRR, e.g 8 %) for any unc change -> reflects to purchase price



Results - Calculations for cost of uncertainty

Impact on purchase price

- Median = 0.4 %
 - To compensate lower debt and keep IRR neutral

For 60 MW* wind farm = minus 290 k€ on purchase price

*: assumed 1.2 M€ per MW installed median 1.4 M€/MW acc to IRENA (2018)

Example impacts on purchase price Wind measurements

ltem	∆ σ [AEP]	60 MW (72M€)	200 MW (240M€)
No pre- and post verification reports Missing Sodar installation report	+1-4 %	0.29-1.2 M€	1.0-3.8 M€
Unclear or missing mast documentation Top sensor data inconsistency	+1-3 %	0.29-0.9 M€	1.0-2.9 M€
Too short mast compared to HH	+ 0.5- ↑ %	0.2- ↑ M€	0.5- ↑ M€

What can you do?

- AEP uncertainty reduction can increase value of wind farm
- Do not save too much € when planning measurement campaigns
 - ► Cheap ≠ high quality
- Follow international standards and best practices
- Careful online monitoring of measurements, <u>quality checks</u>
 - Early intervention, corrective measures for mast sensors but especially remote sensing devices (Sodar, Lidar)
- Evaluate the measurement campaign throughout the project lifetime.

What can you do?

Fix issues if possible before measuring

Examples	∆ σ [AEP]	200 MW (240M€)	Solution	Solution cost	Payback
Before measurements					
Sodar/Lidar pre (& post-verification missing)	+1-3 %	1.0-2.9M€	3+3 month verification against mast	20-50 k€	x 20-150
Unclear or missing mast (installation) documentation, poor installation	+0.5-1 %	0.5-1.0 M€	Get experienced solution provider	5-50k€	x 10-50
Mast 20m below hub height	+0,5-2 %	0.5 - 2.0 M€	Rent Lidar 1 year	60-90 k€	x 5-20

What can you do?

Improving measurements saves in the long run

Examples	∆ σ [AEP]	200 MW (240M€)	Solution	Solution cost	Payback	
Before measurements						
Sodar/Lidar pre (& post-verification missing)	+1-3 %	1.0-2.9M€	3+3 month verification against mast	20-50 k€	x 20-150	
Unclear or missing mast (installation) documentation, poor installation	+0.5-1 %	0.5-1.0 M€	Get experienced solution provider	5-50k€	x 10-50	
Mast 20m below hub height	+0,5-2 %	0.5-2.0 M€	Rent Lidar 1 year	60-90 k€	x 5-30	
During measurements						
Mast top spire not IEC-12-1:2017 compliant	+0.2-1 %	0.2 - 1.0 M€	Install new top spire	20-50 k€	x 4-60	
Mast top sensors malfunction	+0.5-1 %	0.5-1.0 M€	Install new sensors	10-20 k€	x 30-100	
Sodar/Lidar measurements location/measurement issues	+0.5-1 %	0.5-1.0 M€	Relocation/ Replacement/ Verification	5-60 k€	x 10-30	

Summary

- Evaluate the measurement campaign throughout the project lifetime.
- Focus on uncertainty reduction.
- Active uncertainty reduction will be the future!

 $Cost_{unc}(\Delta\sigma) = \Delta\sigma \times 0.004 \times Cost_{inv}$

Thank you for listening!