

Development of numerical models for ice accretion predictions

R.Z. SZASZ, M.RONNFORS, A. DUBILLE <u>J.REVSTEDT</u>, LUND UNIVERSITY, WINTERWIND 2018

Goals

- Develop tool to model simultaneously flow and ice accretion
 - Efficient (relative)
 - Flexible
 - » Avoid/fewer model coefficients
 - » Complex/moving geometries
 - Combine with other modules
 - » Performance
 - » Noise

Outline

- Ice accretion simulations
 - Rime ice
 - Glaze ice
- Full turbine simulations
 - From 2D to 3D
 - Turbine acoustics

Method

R.Z.Szasz et al. Lund University, Winterwind 2018

INTERNATIONAL WIND ENERGY CONFERENCE

UNIVERSITY

Flow

- Incompressible Navier Stokes
- Finite Differences (3rd, 4th)
- LES (implicit)
- Equidistant Cartesian grid
- Immersed Boundary

Droplet transport

- Lagrangian Particle Tracking
- Typically low LWC
 - Only drag force
 - No collision
 - No break-up
- Release: rectangular area, random distribution
- Removal: accretion or max streamwise position
- Impact parameters loggedvinterwind

Ice Accretion

- All droplets impacting on the surface freeze instantaneously
 - Rime-ice conditions
 - For other conditions heat transfer must be included
- Distance from distance function used for IBM
 - Efficient but slightly lower accuracy
- Critical distance

$$-d_{cr}=f\Delta$$

Changing the surface shape

 $\overrightarrow{Di} \approx V_{ice_i} / A_{dualcell}$

- CFD: N,x,y,z,d,m
- every Nth timestep
 - Can be extrapolated in time: $V_{ice} = V_{ice} * C_{time}$
 - Trapped air can be accounted for here
- Filtering
- Iterative algorithm
 - Towards outer normal
 - Assure added V_{ice}
 - Only a few iterations needed erwin

Case set-up

• 'In-fog icing event 2' [Hochart2008]

Parameter	Value
Profile	NACA 63415
Angle of attack	3
LWC	0.37g/m ³
MVD	27.6 μm
Vrel	18.7 m/s
Re	2.49e5
Time	10.6 min
Mass of accreted ice	24±1.75 g

Winterwind

INTERNATIONAL WIND ENERGY CONFERENCE

Modeling glaze ice

- Idea
 - Do NOT freeze instantaneously
 - Estimate time needed to freeze based on a simplified model of a spherical droplet

WIND ENERGY CONFERENCE

Glaze ice results

– Fluid film

INTERNATIONAL WIND ENERGY CONFERENCE

Simulation of an iced turbine

- Experiments and computations often focusing on 2D airfoils
- Full 3D computations/measurements often complicated/expensive
- Need to have data along a full blade but only a few radial positions available

Simulation of an iced turbine

Strategy

- Iced profiles at a few radial positions
- Create CD and CL data for profiles
- Extrapolate data to full blade
- Use this in actuator line model
- Simulate turbine using LES and extract acoustic sources
- Use therse sources in an acoustic solver

2D RANS simulations based on the shapes from Hochart et al (2008). AOA=8 degrees

Clean NACA 63415

Lift and drag data

Sea Winterwind

INTERNATIONAL WIND ENERGY CONFERENCE

$2D \rightarrow 3D$ Method

- Profile
 - Clean
 - With Ice
- Cd, Cl
- Rmin,max
- Omega
- Twist a.

@random AoA,r

Poisson solver

- Output
 - 3D blade
 - Clean
 - With Ice
- For all AoA,r
 - Cd, Cl
 - Twist a.
- Estimate of m_ice

Difference between clean and accreted profile

2D->3D Results

Twist angle extrapolated along the radius with three different settings

R.Z.Szasz et al. Lund University, Win

2D->3D Results

Drag coefficient for different R and AoA extrapolated with three different settings

2D->3D Results

Reconstructed rotor blade and cross section at half the rotor radius (black clean, blue with ice)

Pressure fluctuations, clean turbine

- Run with iced blades
- Alter terrain properties for sound propagation studies
- Include acoustic sources from blade turbulence
- Multiple turbines

Acknowledgements

- Financing: STEM Kallt klimat: *Wind Turbines in Cold Climate: Fluid Mechanics, Ice Accretion and Terrain Effects*
- Computing resources: SNIC/Lunarc (Lund Univ.)

Thank you!

