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Motivation - Uncertainties in the 
modelling chain 

Multi-physics icing-model ensemble 
Uncertainty quantification as well as probabilistic forecasts provide estimations of forecast 
uncertainty and increase forecast skill. 

Previous study on initial condition and post. processing uncertainty contribution: 
 Probabilistic forecasting of wind power production losses in cold climates: A case study, J. P. Söderman et. al. Wind Energy 
Science, Discussion paper, https://doi.org/10.5194/wes_2017_28 



Modelling chain 

ECMWF 
Global model 
+ regional 
data 
assimilation 

HarmonEPS 
@2.5km 

Based on 
Makkonen 

+ Wind erosion, 
melting, 

shedding and 
sublimation, 
icing due to 

snow, graupel 
and cloud ice 

Statistical 
model 



Period and verification data 

•  Two winter periods:  
•  December 2013 to February 2014  
•  September 2014 to December 

2014  (February 2015) 

•  Four observation sites, wind parks 
without ice protection systems: 

•  Wind speed (from the nacelle) 
•  Temperature (from the nacelle) 
•  Production data 
•  (Icing observations) 

Sites 

Model domain 

•  Forecasts 06 UTC +42h (+18-42h for 
next day) 



Icing model ensemble  

Icing 
 model 

Uncertain parameters  
of the model with estimated  
uncertainty distribution 

Uncertainty distribution  
of icing forecast  
(production loss forecast) 



Sampling from the uncertainty 
distribution with an ensemble 

Optimal selection of ensemble 
members limits the ensemble size.  
⇒ Less computational time and easier 

uncertainty quantification. 

Random sampling Deterministic sampling 



Sampling from the uncertainty 
distribution of each parameter 
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Deterministic sampling 
Hadamard matrix 
-  9 member ensemble (8 perturbed) 
-  Perturbed members weight ~1/18, control 

~9/18 
 

(No skewness) 

Random and deterministic sampling results in 
similar ensemble mean and mean spread 



Uncertain parameters in the icing 
model 

Five parameters based on literature studies  
 
MVD – Median Volume Diameter 
IFP – Ice shedding factor 
WE – Wind erosion 
Nu – Nusselt number 
β – Sticking efficiency for snow and graupel 



Perturbations for the ice growth 
 
MVD – Median Volume Diameter 
-  f(LWC,Nd)  
-  Effects the collision and accretion 

efficiency 
-  Is done for all hydrometeors: Cloud 

ice/water, rain, snow, graupel 
-  Is perturbed with a constant          

+/- 0.5 (50%) 
-  Previous studies (eg. Davis2014) 

show large effect on the ice load 
 

Uncertain parameters in the icing 
model 

Nu – Nusselt number 
-  Effects accreation efficiency and  

sublimation 
-  Depend on the ”angle of attack” 
-  Is perturbed with constant (NuC) 

0.03+/-0.015 
-  Based on Makkonen2000 and 

Wang2008 
 
 

Davis, N., Hahmann, A. N., Clausen, N. E., and Žagar, M.: Forecast 
of icing events at a wind farm in Sweden, Journal of Applied 
Meteorology and Climatology, 53, 262–281, https://doi.org/10.1175/
JAMC-D-13-09.1, 2014 

Wang, Xin: Convective heat transfer and experimental icing 
aerodynamics of wind turbine blades, 
http://hdl.handle.net/1993/3082, 2008 
 
 Makkonen, L.: Models for the growth of rime, glaze icicles and wet 
snow on structures, Philosophical Transactions of The Royal Society 
Lond., 358, 2913–2039, https://doi.org/10.1098/rsta.2000.0690, 
2000. 



β – Sticking efficiency for snow and 
graupel (α2) 
-  β = 1/vbC (v=wind speed) 

-  bC is perturbed with 0.75 +/-0.22 
-  Based on Nygaard et al (2013) and 

ISO2001standard for ice modelling 
where it is stated as very uncertain 

 

Perturbations for the ice growth 

Uncertain parameters in the icing 
model 

Nygaard, B. E. K., Àgústsson, H., and Somfalvi-Tóth, K.: Modeling Wet Snow 
Accretion on Power Lines : Improvements to Previous Methods Using 50 
Years of Observations, Journal of Applied Meteorology and Climatology, 52, 
2189–2203, https://doi.org/10.1175/JAMC-D-12-0332.1, 2013 

Sensitivity of the “ice 
growth perturbations”: 
  

  ∂ploss
∂STD

≈ ±0.1MW



IFP – Ice falls of during melting 
(Björn Egil Nygaard)  
-  Constant in the equation for 

melting = 8 
-  Perturbed with 8+/- 3.5 
-  Is estimated for ice on power lines 

WE – Wind erosion 
-  g/m2/(ms-1) after 5 ms-1 
-  Is perturbed with 10+/- 4.4  
-  Has been shown to be 

important in the icing model, 
but in eg. Davis2016 it is not 
very sensitive. 

-  Perturb more? 
 

Perturbations for ice loss  

Uncertain parameters in the icing 
model 

(+ Nusselt number for sublimation) Sensitivity of the “ice loss 
perturbations”: 
Low on average, high 
occasionally Davis, N. N., Pinson, P., Hahmann, A. N., Clausen, N.-e., and Žagar, M.: 

Identifying and characterizing the impact of turbine icing on wind farm power 
generation, Wind Energy, 16, 1503–1518, https://doi.org/10.1002/we, 2016 
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Results – Example 

“Uncertainty estimation” 

Verification 
•  The ensemble 

forecast is compared 
with the control 
member which has 
no perturbations 

Uncertainty 
estimation 
•  Mean spread of 

ensemble members 



Results – Reduced forecast error 

Site A B C D 
CM 0.54 0.49 0.33 0.48 
Det. sampling 
(Ensemble mean) 

0.45 0.45 0.29 0.45 

RMSE production loss (MW)  

Site A B C D 
CM 0.38 0.27 0.35 0.34 
Det. sampling 
(Ensemble mean) 

0.32 0.24 0.31 0.33 

Average reduction  
of forecast error 

 
~10 % 

2013-2014 

2014-2015 
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Results – Spread/skill 
relationship 

Averaged over the two verification periods 
 

All uncertainties are not 
included 
 
 
 

Ideally, spread = skill 



Results – Uncertainty distribution 
Probabilistic forecasting 
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Based on ensemble, 
probabilistic 
forecasts are 
created. 



Summary 

•  Uncertainty terms of the icing model were identified.  
•  Deterministic and random sampling was used to address 

these uncertainties in the production chain for wind power in 
cold climate.  

•  The resulting ensemble forecasts improves forecast skill.  
•  The spread can be used as an estimation of forecast 

uncertainty.  
•  Deterministic sampling can be used to efficiently address 

model uncertainties and improve the forecast. It has low 
computational costs and can easily be extended with new 
uncertain parameters.  
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 Thank you! 


