

Overview of IEA Wind Task 19 results from 2013-2015

WinterWind 2016, 9-10.2.2016, Åre ,Sweden

IEA Task 19 Operating Agent: Ville Lehtomäki VTT Technical Research Centre of Finland Ltd

Outline

- What is IEA Task 19?
- Main achievements of working period 2013-2015
- Quick view to 2016-2018 activities
- Conclusions & next steps

What is IEA Wind R,D&D Task 19?

- Task 19 Wind Energy in Cold Climates expert group
- Working group for
 - Acquaring information on the cold climate wind energy topic
 - Writing recommendations
 - Disseminating information
 - International research collaboration
- Task worked since 2002
- Next term 2016-18 beginning
 - Newest members: Norway & UK

Main achievements 2013-2015

1)

T19IceLossMethod

T19IceLossMethod free software

• Why need?

- 1. Compare different icing site severities with each other
- 2. To validate the IEA Ice Classification
- Evaluate effectiveness of various blade heating systems versus non-heated systems

The Goal:

- Develop and validated a robust method to assess icing losses from standard SCADA data
- The method should 1) focus on robustness and 2) minimize the uncertainties from false icing event alarms
- Maximize easiness of calculating production losses for any SCADA dataset with a free software

T19IceLossMethod free software

The Approach: Different Icing Event classes

07/02/2016

Download free T19IceLossMethod here!

2)

Available Technologies - report

Available Technologies - report

Objective

- summarize available state-of-the-art cold climate wind energy solutions
- "compare & pick" your CC solution need

Target audience

- project engineer
- researcher/consultant working for developer

Gives

- Easy summary tables as core "beef"
- Entire CC value chain included

Next edition update in progress

Lauch in 2016

Download free previous 2012 edition http://www.ieawind.org/task_19.html

iea wind

Example: Ice detection summary table

Mast/nacelle detection							
Detector manufacturer	Technical description	Applications		Sold items	References		
HoloOptics T40 series		Meteorological icing:	X		<u>Paper:</u> [12], [13]		
		Instrumental icing:	.,		Dorf : [4.4] [4.5]		
		Icing rate: Icing severity:	X		Perf.: [14], [15]		
		Used for turbine control *:			Other: [16]		
Combitech IceMonitor (ISO		Meteorological icing:	X		<u>Paper:</u> [12], [13], [17], [18],		
Cylinder)		Instrumental icing:	X		[19]		
		Icing rate:	X				
		Icing severity:	X		Perf.: [14],[15]		
		Used for turbine			04 [00]		
		control *:			Other: [20]		

Example: CC turbines summary table

					IceProtection System			N of refs		
	1sLTC	LTC	<u>lce</u>	<u>IOM</u>	Method	<u>1st</u>	<u>instal</u>	<u>Jou</u>	<u>Per</u>	<u>Oth</u>
	<u>proto</u>	[MW	Dect			proto	[MW]	<u>r</u>	<u>f</u>	
OEM B	<u> 1996</u>	<u>50</u>	<u>TH</u>	<u>X</u>	BB/IC	<u>1999</u>	<u>20</u>	_	<u>3</u>	<u>3</u>
OEM C	<u>2002</u>	<u>700</u>	<u>NI</u>	X	ET/PS	<u>2012</u>	<u>50</u>	_	2	<u>3</u>
OEM D	<u>2008</u>	<u>500</u>	<u>PC</u>	_	<u>HA</u>	<u>2014</u>	<u>300</u>	_	_	<u>3</u>
<u>OEM E</u>	<u>2006</u>	<u>400</u>	<u>NI</u>	_	<u>ET</u>	<u>2008</u>	<u>600</u>	_	<u>1</u>	_
<u>OEM F</u>	<u>2001</u>	<u>500</u>	PC &	X	<u>HA</u>	<u>2014</u>	<u>180</u>	_	_	<u>4</u>
			<u>BF</u>							

PC = Power Curve ice detection

NI = Nacelle based ice detection

TH = Temperature and humidity

BF = Blade frequency ice detection (or just rotor blade)

HA = Hot air ice protection system

ET = Electro thermal ice protection system

BB = Black blades

IC = Ice phobic coating

PS = Preventive shutdown

3)

Recommended practices- report

IEA Ice Classification

Validation of Ice Classification in René Cattin's presentation later...

Ice throw guidelines

What is Task 19 doing in 2016-2018?

IEA Task 19 topics for 2016-2018

Deliverables

Topic	Content	2016	2017	2018
Deployment	Market study update for 2016-2020			
Standardization	International standard IEC 61400-15 "Site energy yield assessment" CC aspects			
	T19IceLossMethod valid. & development			
	Laboratory and full scale testing			
	Ice protection system performance evaluation guidelines			
Ice meas. & mapping	Ice mapping			
	Ice sensor classification			
Safety	International ice throw guidelines			

Conclusions

- Main achievements of working period 2013-2015
 - 1. T19IceLossMethod free software
 - 2. Available Technologies report (ed 2016)
 - 3. Recommended Practices report (ed 2016)
- Task 19 will heavily focus on standardization in 2016-2018!
- Want to join Task 19?
 Please contact Ville!!

