



University of Stuttgart Germany

Photo: VTT

# Simulation and Validation of the Aerodynamic Performance of Iced Wind Turbine Airfoils

Dipl.-Ing. (aer) Richard Hann richard.hann@gmx.de







#### Introduction

Ice accumulates on the leading-edge of the airfoil and may cause severe flow separation.









# Simulation

Numerical methods are used to:

- Predict ice shapes
- Estimate performance losses
- Assess additional loads
- Design anti- & de-icing systems







# **Numeric Methods**

#### Panel method

- Fast & efficient
- Simple geometries
- e.g. Xfoil

#### CFD

- VS Slow & expensive
  - Complex geometries
  - e.g. TAU-Code (DLR)











### **Simulation Clean Airfoil**







## **Simulation Iced Airfoil**







## Summary

> Panel methods are widely used for icing simulation In the iced state panel methods fail to capture the airflow correctly > Higher order RANS-solvers are needed for more realistic results  $\succ$  However this comes at higher computational costs and higher complexity



#### University of Stuttgart Germany

# References

- R. Hann, A. Wolf, D. Bekiropoulos, T. Lutz, E. Krämer: *Numerical Investigation on the Noise Generation of Iced Wind Turbines*. Winterwind, 2013
- R. Hann, S. O. Neumann: Thermal Analysis of a Heated Rotor Blade for Wind Turbines. Winterwind, 2012
- H.E. Jr. Addy: Ice Accretions and Icing Effects for Modern Airfoils. National Aeronautics and Space Admistraton (NASA), 2000.