

Ice Protection Systems

A Parametric Analysis for Return on Investment

Presented by: Matthew Wadham-Gagnon, eng.

At WinterWind 2014

Dominic Bolduc, TechnoCentre éolien Hussein Ibrahim, TechnoCentre éolien Maryse Dufresne, CEGEP de la Gaspésie et des Iles

Cold Climate Global Market

Globally 11,5 GW currently installed in moderate to severe icing 19,5 GW expected by 2017 (BTM World Market Update)

Assuming: 5% AEP loss due to icing without IPS, 30% utilisation factor, 100\$/MWh:

\$150M/yr lossed due to icing in 2012 \$255M/yr lossed due to icing by 2017

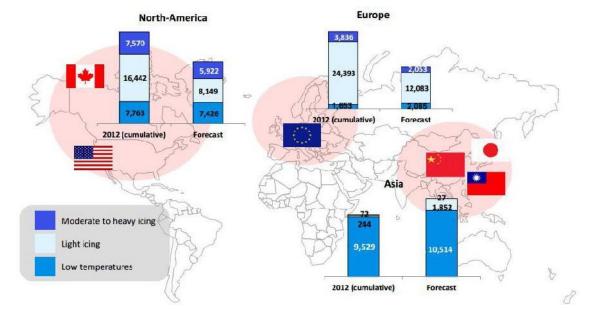
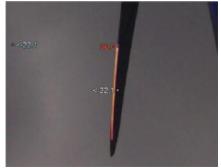



Image source: BTM World Market Update 2012, Navigant Research, 2013

Ice protection systems (IPS)

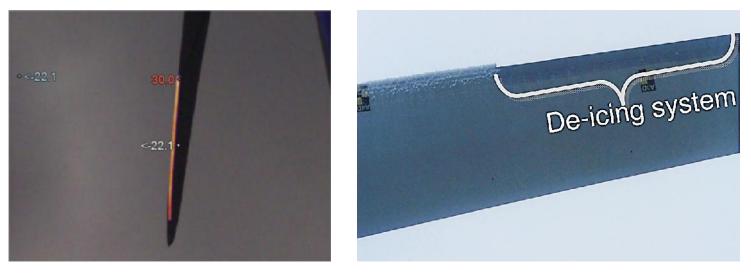
- Active systems
 - Examples: hot air, microwave pulse, integrated or retro-fit électrical resistance heaters

Repower, Winterwind 2013

- Passive systems
 - Examples: icephobic materials, nanotechnologies, black blades

www.balconnette.co.uk

- Other solutions
 - Examples: Helicopters, rope access



IPS related activities at the TechnoCentre

- Assessment of a thermoelectrically heated foil prototype

 - Performance validation

• Performance validation of passive systems

Expected Energy Lost due to icing

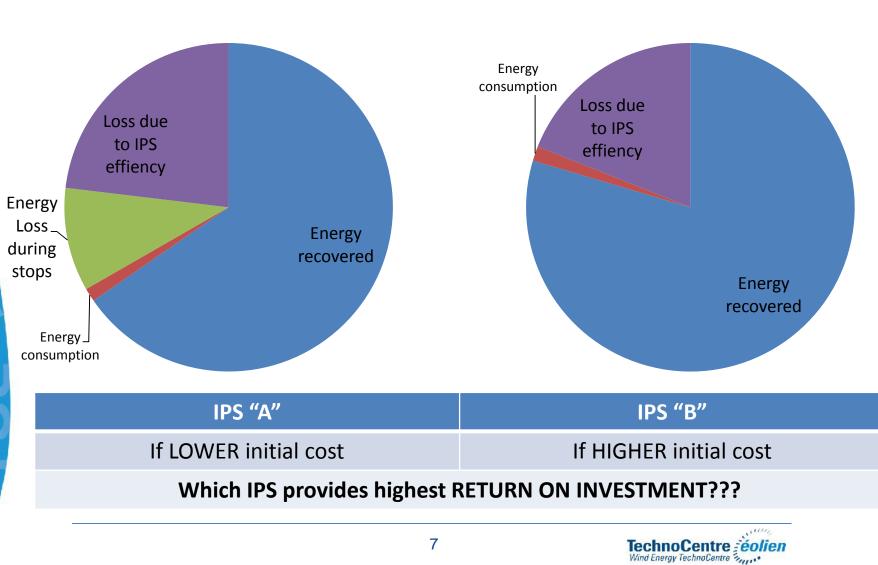
Generic (Realistic) Example

Turbine Rated Power	2 MW	\mathbf{N}
Estimated Utilisation Factor (UF)	~34%	
Annual Energy Production (AEP):	6 TWh	
Meteorological Icing (% of year)	6%	
Instrumental Icing (% of year)	11%	
Expected loss due to icing with no IPS	300 MWh 5% AEP	

Energy Recovered with IPS

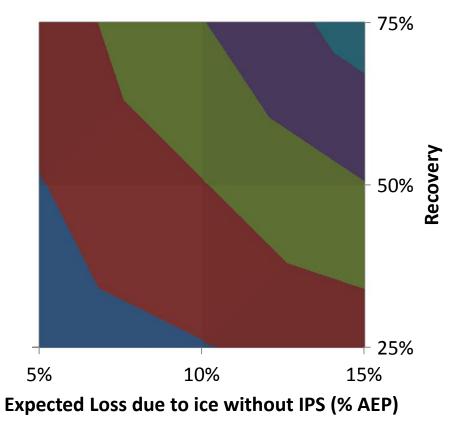
Generic (Realistic) Example continued:

Of the 300 MWh of energy available to recover



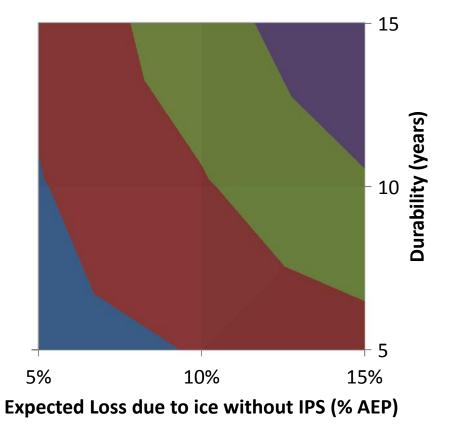
Energy Recovered with IPS

IPS "B"


IPS "A"

Recovery & site severity

Initial Cost per MW for a Break Even ROI (assuming 15 years durability)

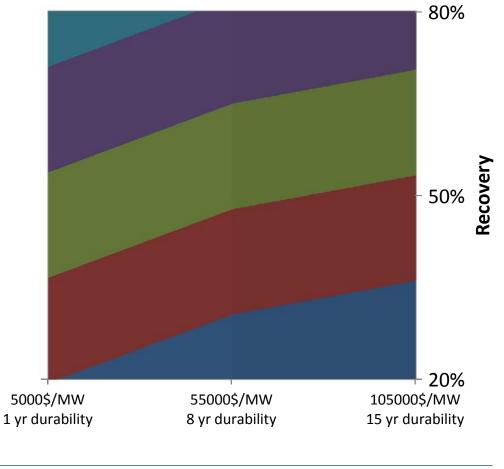


300 000 \$-375 000 \$
225 000 \$-300 000 \$
150 000 \$-225 000 \$
75 000 \$-150 000 \$
0 \$-75 000 \$

TechnoCentre

Durability & site severity

Initial Cost per MW for a Break Even ROI (assuming ~65% recovery)



225 000 \$-300 000 \$
150 000 \$-225 000 \$
75 000 \$-150 000 \$
0 \$-75 000 \$

and the second

Return on Investment

Annual Return on Investment of IPS (assuming 10% AEP loss without IPS)

30 000 \$-40 000 \$
20 000 \$-30 000 \$
10 000 \$-20 000 \$
0 \$-10 000 \$
-10 000 \$-0 \$

and the second

Surface Coverage of an active IPS

25 000 \$ 20 000 \$ Annual RO 15 000 \$ -5000\$/sqm **—**7000\$/sqm 10 000 \$ -9000\$/sqm -11000\$/sqm 5 000 \$ 0\$ 0 0,05 0,1 0,15 0,2 0,25 0,3 Surface coverage (% of ideal surface coverage) Assumptions:

ROI as function of surface coverage and estimated cost/sqm

10% AEP estimated loss due to ice without IPS

Fixed installation costs

Recovery varies as a function of coverage

Conclusions

- Return on investment depends on recovery, cost and durability of IPS
- A low cost and low recovery IPS can provide equivalent of higher ROI to a high cost high recovery IPS
- More surface coverage ≠ more ROI

Matthew Wadham-Gagnon

Project Manager mgagnon@eolien.qc.ca

70, rue Bolduc, Gaspé (Qc) G4X 1G2, Canada Tél. : +1 418 368 6162

Thank you

Développement C économique Canada D

Canada Economic nada Development

