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Summary

The danger from ice being thrown is related to the size of the individual ice fragment and its 
velocity as it hits the ground. The ice fragments can be very small, causing mere annoyance or they 
can be big enough to be lethal. Between these extremes there is a scale of possible damage levels. It 
is important to have knowledge about the distance from the turbine where ice falls. Such 
information can be used for fencing in areas around the turbine or placing signs of warning, both of 
which are directed to the general public who might want to use the area for winter sports.

In this study the following areas of knowledge have been used.

Dynamics of bodies traveling throw the air
Statistical functions for distribution of ice thickness and throwing angle
Statistical information about the wind from measurements
Terrain characteristics 
 
The results show that the heaviest pieces of ice, in the order of 10 kg, fall in the vicinity of the 
turbine, while very small fragments, in the order of 1 gram, will be blown as far as 600 m. The 
problem is complicated by the fact that very little is known about ice distributions around wind 
turbines. The methods used are therefore dependent on conjecture of several input parameters. 
These parameters can be modified and the computer programs that were used can be rerun in order 
to answer questions of type “what-if”.

One section deals with the responsibility of the owner versus the public. An algorithm is proposed 
for the purpose to calculate the probability of a hit on an object of given size in the form of an area 
projection. For a human body this might be 0.5 m2. The danger level results can be used for liability  
considerations as well as discussions with the insurance industry concerning premiums.
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1. Introduction
Wind turbines like other structures, exposed to all weather conditions, will accumulate ice deposits under 
certain temperature conditions. The risk for ice formation is when the temperature is zero degrees or lower. 
When ice deposits melt the ice falls to the ground from any structure, whereas the ice may even be thrown 
from a turbine that operates. That situation may cause damage or injury. In order to analyze these 
consequences a model of ice ejection and analysis was created. The model was manifested as a set of 
computer programs jointly called KASTIS in this report. First (step 1) a mechanical dynamic program 
provides ice throw lengths, weight distributions and momentum distribution at ground impact. The output 
from this program is a large database in a typical run. 

With initial values the trajectory from blade to ground is integrated using the resistive force from the relative 
wind and gravity as the driving forces. The output can typically contain about 60 million throws and the size 
of each output file then becomes four gigabytes. These perhaps surprisingly high numbers result from the 
technique to select a number of realizations from probability distributions of wind direction, wind speed, 
azimuthal throwing position and ice thickness. The ice, still on the blade, is primarily broken at preset radial 
positions according to the input. According to the model a break-up of the primary ice blocks, caused by the 
total pressure exposure at release from the blade, further increases the number of ice blocks thrown. All of 
these throws add up to the big output with one output line per throw.

Because of the considerable size of the output, from the first step, it was necessary to condense the material 
into statistical quantities, which were tabled in a program tool designed to read up the big output (step 2). 
Even the tabled statistical condensation would be far too tedious to the human mind to analyze, especially 
since the total process is required to be repeated for a large amount of mass class and momentum class cases. 
Therefore yet another program was created whose purpose it is to present the statistical data in a graphical 
form using color coding, which is better disposed for human interpretation (step 3).

The intent is that the resulting color charts be used as a foundation for the decision making concerning public 
access restrictions as well as risk assessment relating to humans and property. 

2. Probabilities
Probability of several input variables is an input to the procedure of finding the ground hit probability. For 
this purpose the wind probability, for direction and velocity, is multiplied by the probabilities for azimuth 
angle and ice thickness. The resulting number is interpreted as the probability of an individual single throw 
valid for one piece of ice from one blade per throw situation. All pieces of ice leaving the blade will have 
different numbers assigned to their probability respectively.

The turbine site is divided into angular sectors with radially delimiting circles around the turbine according 
to Fig. 1. This figure will be made reference to using the term 
“dartboard”. The area, bordered by spokes and circles, is referred to 
as a pane or a panel. A pane can be pointed to using the integer 
coordinate system (i, j). Since a pane has four corners a convention 
is necessary. The convention, used throughout the programs, is to use 
the highest spoke value and the highest circle value. One pane in Fig. 
1 is shaded to illustrate the point. The red dot is placed in the “high” 
coordinate corner. The figure does not exactly agree with the 
dartboards used in the programs. There the number of circles, in the 
main study, was 11 rather than than 4 as Fig. 1 shows.

Each piece of ice will fall into one of the many panels of the dart 
board. When the whole series of throws has been completed ice will 
have fallen on most panes. Those that never caught any ice have an 
ice hit number equal to zero. The extent of the encircled area is set 
by program logics in step 2, which looks through the big file for the 
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longest throw. The number of circles, however, is defined as an input.

Because the different ice fragments in the different panes represent a wide span of weight a classification is 
needed. E.g. when the individual ice fragment weights range from 0.8 grams to 12 kg a division into weight 
ranges is driven by the insight that the 1 gram pieces are innocuous and the weight in excess of say 1 kg is 
lethal. For purposes of injury risk and property damage the weight ranges, in the cases calculated, were by 
choice limited by the following limits 0.0008 0.001, 0.01, 0.1, 1.0, 10.0 and 12.0. As seen even decades was 
the basic principle, while the lowest and the highest values are exceptions. The weight range between two 
limits will be referred to as a class. In this particular context we have weight classes. Later momentum 
classes will be also considered. The first weight class is thus from 0.0008 to 0.001.

The division into classes can of course be divided into any other dividing scheme. The described choice was 
simply chosen as an example when the runs were carried out. A totally different approach would be to break 
the total mass range into say classes based on severity of a hit. These classes could be associated with 
guesstimated damage to say persons accordingly: Innocuous, hurting, hurting badly, injurious, lethal. Perhaps 
an institution such as European NCAP would place the limits between the classes differently. Perhaps the 
classification would be different when damage to property is considered instead of humans. At the present 
time this type of knowledge is not yet available to the author.

All individual ice fragment probability numbers, belonging in a weight range, are summed within every 
pane. The sum, as discussed in Appendix 5, is the number of ground hits of the class within the pane. A class 
number is assigned to the particular class. In the example six classes became the outcome. The first weight 
class is noted by the number 1. The other classes are noted by ascending integers. The procedure can be 
repeated to be valid for momentum at ground hit, rather than weight.

The set of data accumulated as described constitutes the output from the program system.

Program dartboardProb (of step 2), described in more detail below, generates the “probabilities” added 
within each class within each pane in a textual table format. The underlying technique is the addition of 
probability numbers and also these numbers divided by the pane area within which the probability numbers 
were collected. In summary there are two types of “probability” numbers (within each class). One is obtained 
as a simple sum of individual ice chunk probabilities within a class. It is referred to as type “P1”. The other, 
which is divided by the connected pane area, is referred to as the “P2” type.

The purpose of the P1 type is to serve as a number of ground hits. This type is simple for the analyst to get a 
feel for and make use of for purposes of feasibility checking. The P2 type is used for multiplication by the 
projected hit area A of say a human. If the result is denoted by P we thus have: P = P1*A/paneArea=P2*A. 
The P2 values are thus more immediately connected to risk assessment for humans and any other object. The 
P2 values are generally one or two orders of magnitude smaller than the P1 values.

3. Programs
The set of tools used in this study consists of a number of interconnected programs and files. The word 
program in this context is used to mean computer program. In Fig. 2 rectangles with a fat blue frame signify 
program. Those with a thin black frame are files. The programs are presented below in the sequence as seen 
in the block chart.
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mkInputData

Input data for Kastis6

Kastis6
(step 1)

plotPepper

dartboardProb

File: programSequence.eps

plotProb
(Step 3)

Max throw length
Max and min values of
mass and momentum

Probability tables

Big file with all
throws recorded

Class definition data

Pepper graph

terrModel2

Terrain file

Wind probability
file 

Color coded graphs

Step 2 

3.1 mkInputData
The “main” input to Kastis6 can be created with a specialized program/tool called “mkInputData”. Its main 
purpose is to ascertain the quality of the resulting file. If edited from scratch some of the inputs might never 
be represented because of oblivion or neglect from the analyst of the ice throwing endeavor. Once one file 
has been created, using the tool, the simplest way to provide a new input to Kastis6 is to simply use a text 
editor program. The actual main input, for the main study, follows.

 -------------------------------------------------------------------------------
                 Input data to program: KASTIS6
                      Sep 30, 2012 16:31   
 -------------------------------------------------------------------------------
 iceDist =  1       Ice thickness distribution type. 1 is Gauss, 2 is constant.
 nIceThick =  9     Nr of ice thickness discretizations.
 sigmaIceThick=0.01 One std deviation.Distr=one half Gauss (ave=0)
 withinIce =T       Ice range rule.If true bars stay within 3sigma.
 aIce      =0.0000  Low range end value for ice thickness if distr=constant.
 bIce      =0.0000  High range end value for ice thickness if distr=constant.
 clockDist =  2     Clock distribution type. 1 is Gauss, 2 is constant.
 nClock    =  12    Nr of clock positions where ice is thrown from.
 aveClock  = 7.000  Center of Gauss distr given as clock position.
 sigmaClock= 2.0    Clock "time" width of one sigma.
 withinClock =F     Clock range rule.If true bars stay within 3sigma else on limits.
 aClock    =1.0000  Low range end value for clock position if distr=constant.
 bClock    =12.000  High range end value for clock position if distr=constant.
 iceLenRel = 0.10   Ice length rel chord length,valid for whole blade.
 nB        =  3     Nr of blades.
 nBE       = 51     Nr of blade elements where ice is thrown from.
 Rtip  =  50.000    Rotor blade tip radius (m).
 Rhub  =   2.000    Rotor blade hub radius (m).
 G     =  9.810     Gravity acceleration (normally 9.81)
 ROAIR =  1.225     Air density (Standard sea level: 1.225)
 CD0   =  1.000     Drag coefficient of an object with (relatively) sharp edges (=1.0)
 H     =100.000     Tower height.
 OMEGA =  1.400     Rotor rotational speed (rad/s).
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 WG    =  0.000     Vertical wind positive up.For experimental purposes only.
 DT    =  0.200     Simulation time step.
 overHang=  5.000   Dist from tower center to hub
 cutinWind =  3.000 Lowest wind for operation.
 cutoutWind= 28.000 Highest wind for operation.
 rf    =0.700       Factor on dynamic pressure when breaking ice.
 sigmaUlt= 0.50E+06 Breaking tension for ice.

Further explanation of the main input is provided in Sect. 4. It can be noted that although the number of 
blades appears in the input. It is not used anywhere. It is, however, retained for future use.

3.2 terrModel2
Appearing on the right in Fig. 2 is the terrain file generating program “terrModel2”. It is used together with a 
map of the site containing height curves, see Fig. 3. A radial beaming out from the turbine chosen provides a 
base for the heights given. This radial (even referred to as a spoke) has an angle to the north/south line 
measured like a wind direction. The spoke will cross over terrain height curves. The crossings, appearing in 
green in Fig. 3, are suitable bases for data points.  The complete definition of a terrain point thus consists of 
spoke angle, radial measure and height. 

A small error will be introduced because a wind turbine will rarely be placed exactly on a terrain height 
curve and the turbine height must therefore be conjectured. Terrain map height values are usually negative. 
Fig. 3 just illustrates the principle. The actual spoke layout is different in the study. The beginning of an 
example of a terrain file follows. Italicized text was added for explanation.To get a feel for distances the map 
height was measured to be approximately 2 km.

* File name at time of creation: terrain.txt                      
  
Direction:  18.0      <-- The spoke compass direction
 *-----------------------
 *  Radius  Height
 *-----------------------
  290.0!    -10.0 <-- Meters and height rel. to the
  364.0!    -20.0     tower foot height
  473.0!    -30.0
  
Direction:  108.0
 *-----------------------
 *  Radius  Height
 *-----------------------
  120.0!   -10.0
  244.0!   -20.0
  309.0!   -30.0
  436.0!   -35.0
  
The reading mechanism ignores any line whose first character is an asterisk. 

Winds at a site:
One of the three input files to Kastis6 contains the wind information. The following table, based on wind 
measurements, is a typical requirement. Together with the site terrain description it constitutes the site 
specific basis of the input set - for a complete study using KASTIS. Each column under the wind direction, in 
the table, represents the counts of occurrences of binned wind speeds. The wind speeds appear as integer 
numbers in the leftmost column headed “Bin Mean”. If e.g. a wind speed average over 10 minutes is in the 
range 5.5 < = wind speed < 6.5 m/s then that average wind speed is recorded as 6 m/s. This rule is seen as the 
somewhat cryptic words “Start” and “End” in the table head. 

The next column in the table contains the sum of the values on the right. Table line number 2 contains the 
average of the wind speeds in the column.
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The information consists of the number of periods the wind direction sector 
caught the wind. All wind sampling periods were of a certain sampling 
period usually of 10 min duration. The average wind, with its average 
direction, within a period, was put in its appropriate table bin by adding 1 
to the number that was there prior to the addition. 

Fig. 4 contains a graphic companion to the table, where the following idea 
is visualized. Each standard wind direction such as N, according to the 
table head, is a bin-notation for a measured 10 min average of the wind 
direction, which lies in the blue sector - likewise for NNE, ENE etc.

The probability of occurrence (not frequency of occurrence) is obtained 
when a bin number, in the table matrix, is divided by 65688. The latter 
number is the total number of wind catching periods, see the bottom line of 
the table. A new table can therefore be created in which all original 
numbers are replaced with the corresponding probability number. The 
converted table can be thought of as a wind probability table. It is not shown in this report. 
But, it is used as one of the input files to Kastis6.
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3.3 Kastis6
3.3.1 Throw angle:
As a basis for the work finding the various probability numbers certain distributions of probability and ice 
accretion patterns must be established. One decision concerns the azimuth angle range within which ice will 
separate from a blade. This can be subdivided into two problems. The first is to make a statement as to where 
a typical (probable) azimuth separation angle is to be placed. Since gravity and centrifugal force cooperate at 
their maximum at 6 o’clock this angle must be a guiding basis. Because of an expected delay in the actual 
separation an incremental angle should be added. This will place the favored angle at say 7 o’clock. The 
program sports a Gaussian distribution around the favored angle, which allows possibilities to be explored. 
Both the favored angle, i.e. the average angle, and the standard deviation are inputs to Kastis6. There is also 
a constant distribution option available. It is only this constant distribution that was used in this study. Then 
no particular clock angle is favored. The choice of Gauss or flat is done in the main input file.

3.3.2 Icing situations:
Two situations can be discerned in which ice accretion occurs. 

Case 1 - General ambient icing conditions: 
In a situation when general icing conditions prevail and when the wind velocity is very low - too low for 
turbine operation. In this case the blades and other structures will collect ice for the same reasons of H2O 
phase shift, thermodynamics and heat transfer.

Case 2 - Particular icing conditions on the blade: 
One other possible situation is when the wind is up and there are near icing conditions, for fixed structures, 
but not quite icing. An operating turbine blade will then pick up ice on and near the leading edge at the bulgy 
side of the blades. The reason is an aerodynamically created low pressure region. The lower pressure is 
associated with a lower temperature, according to the general gas law and Bernoulli’s law. The temperature, 
in this region of the blade, therefore will settle at a sub-freezing temperature giving rise to local ice accretion. 

In the case of mist and sub freezing temperature in the ambient air the turbine blades will also collect ice, but 
with a different physical mechanism. Whichever situation prevails the leading edge of the blades can then 
display the different shapes of ice known from aviation literature. The physics, in the described wind turbine 
situation, is then identical to that of the wing of a flying airplane exposed to the same atmospheric 
conditions.

Discussion of the cases: 
In case 1 the ice, under zero wind or very low wind conditions, will be formed depending on the wind 
direction and possibly also on the height above ground. If the temperature increases, without any significant 
increase in wind velocity, the ice will fall down and hit ground below the rotor in a predictable way. The 
situation might be that mist, drifting at low height above the ground, will dominantly be conducive to ice 
accretion on the upper blade(s). As the wind picks up an “intelligent” control system, after initial starting, 
will soon discover a one-per-revolution imbalance. This should lead to an expeditious halt, whereupon a 
renewed attempt might or might not be successful depending on the presence of ice, which might have fallen 
off the blades essentially without rotation. In the case of an interrupted start it seems likely that the rotation 
will be interrupted long before operational RPM has been reached. The ice, if it does fall off, will essentially 
fall in the predictable vicinity below the rotor. Falling ice trajectory is treated below.

In case 2 the gradual ice accretion does not necessarily lead to a noticeable unbalance immediately. 
Therefore the situation will pass unnoticed by the control system, while the ice is building up. Following an 
increase in the ambient temperature ice may be thrown and this happens at operational RPM. This case is the 
more troublesome one since ice can be thrown a long way from the turbine if it is compact. The general 
public might be unaware of the phenomenon and therefore be potentially exposed to an unacceptable risk of 
injury. This case therefore represents the more serious situation, which merits a deeper analysis. This is 
therefore the topic of this report, while general ice accretion is not treated.
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In both cases (1 and 2) ice can be blown by the wind while the turbine is parked. A wind velocity of 9 m/s 
will cause a trajectory, for the falling ice, which approximately has an angle to the ground of about 70°. At 15 
m/s this angle becomes 56° from a numerical example investigated. The trajectory is not a straight line and 
the compactness and absolute weight of an ice block all contribute to the trajectory shape. The numbers 
given are therefore approximate. But, they are good for drawing the conclusion that ice from a parked turbine 
is capable of traveling a long distance before hitting ground. This is a situation which was not covered 
numerically in the computer runs reported here. But, the train of steps of calculation would be similar to 
those presented here. One additional concern would consist in the expected deviation in wind direction and 
nacelle direction, because all control systems may not turn the nacelle into the wind while being parked.

3.3.3 Ice forms:
In reality the flying ice will take an infinite amount of shapes. There is, however, a common feature of all 
these shapes benevolent to analysis. They have mostly sharp edges. This allows the application of beneficial 
“sharp edges aerodynamics”. A blade of a wind turbine is the very opposite. Its shape allows the lifting force 
to be in the order of 100 times larger than the drag force. In this case lift is the power generating component 
of the total aerodynamic force on the blade. The characteristic of the lift is that it is perpendicular to the 
relative oncoming wind. In the case of a blade failure the lift component might extend the “flight” of a blade 
thrown. The blade lift is partly caused by the smooth leading edge. Without it the lift would be poor and on a 
par with the drag force. The latter always works in the direction of the local relative wind (relative to the  
"flying" object).

When the ice leaves the blade it will therefore essentially only be affected by gravity and drag. Disregarding 
lift in a model of a simulation method, for the throw dynamic equations during flight, simplifies the problem 
considerably. It means that the only aerodynamic force acting (drag) is in the direction opposite to the 
relative wind. The moderate lift force, acting perpendicularly to the relative wind in the real throw, is 
assumed to give a stochastic deviation, such that on the average the ground hit distribution will not seriously 
deviate from that of a large amount of tested real cases (which still does not exist). If also lift were to be 
included in the model the associated dynamics would e.g. require a model for rotation of the ice block. This 
poses a considerable complication of the dynamics equations with only a very doubtful improvement of 
accuracy in the predicted ground hit position distribution. The lack of improvement, if lift were to be 
included,  can be assigned to the lack of knowledge of lift and moment characteristics.

The ice forms can therefore be stylized to look like square edged blocks like a board or a brick, see App. 1. 
The relation between the sides of the block is important. If the shape is close to a cube its gravity load will be 
much more dominant than the air load. This leads to a trajectory, which is more close to ditto in vacuum. 
Vice versa the thin ice sheet will travel on a trajectory, whose shape is more like that of a falling autumn leaf, 
which essentially drifts with the absolute wind. Because of these differences in trajectories a variation of the 
block shape is necessary in the simulations of the throws in order to mimic reality.

Calling the length of the sides of the ice block a, b and c, where c is the thickness, the effective variable, 
determining the form of the trajectory, is the mass of the block divided by its average area (Aa). The average 
area is obtained as the normal projection of the block integrated over all space angles. This is because the 
block is assumed to tumble through all angles during its journey from blade to ground. It is then assumed 
that it has time to expose itself to all relative wind directions. The integral, resulting from this model 
assumption, has an analytic solution leading to a very simple expression for the average area (Aa) exposed to 
the relative wind during the trajectory.

Aa = (ab + ac + bc)/2

The details of the derivation appear in App. 1.

Ice mass formula: 
The ice mass (m) depends on absolute size accordingly:

! m = a !b ! c ! "ice

7



The density of ice is approximately: !ice =  900 [kg/m3].

The selection of size of c is complicated by the large variability of the parameters affecting ice accretion. 
One dominating parameter is the size of the turbine. For lack of a simple theory the selection of ice thickness 
is left to the user of the software. By giving a value to the one sigma deviation the maximum ice thickness 
will result from the selection of number of discretizations from the ice thickness distribution. This is further 
discussed in Sect. 4.1.

The outer part of the blade travels faster than the inner part. Therefore, on the average, the ice accretion 
tendency is greater toward the tip, while the surface to stick on is smaller. Thus, there seems to be two 
counteracting effects pointing in the direction that the ice absolute thickness maybe is about constant along 
the blade. There is more theoretical support for such an assumption. This has to do with the dynamics of the 
mist droplets hitting the blade leading edge. There seems to be an effect reminding of the Reynolds number 
effect because small droplets will “notice” the oncoming blade earlier where it is thick. Therefore they have 
more time to be driven along the “stream lines” rather than hitting the blade surface head on. 

The hypothesis of the ice thickness being constant with radius was adopted in the icing model, thereby
shortcutting the very complex background for the ice accretion.

All of the described areas are implemented in Kastis6. It outputs a formidable file (the present one of 4 GB) 
containing many characteristics of every throw. There is also a mechanism that gathers maximum throw 
length and the maximum and minimum values of mass and momentum at the ground hit points. These 
extreme values are outputted in a “diagnostics” file.

The main output consists of one line per throw. The following is a list of the contents of such a line, where 
the first word preceding the explanation is the Fortran name of the variable.

3.3.4 Kastis6 output:
lineCount! Counter of the throws (... not lines; there are a few leading lines before 
the results).
xHit! ! X coordinate of the ground hit (X points east)
yHit! ! Y coordinate of the ground hit (Y points north)
zHit! ! Height above tower foot (frequently negative).
mass! ! Mass of ice block.
v! ! Velocity of ice block at ground impact.
hitAngleDeg! Hit angle relative to the vertical.
Whub! ! Wind speed at hub height (input from the wind probability file WPF).
FIDEG! ! Azimuthal angle at which the ice was thrown.
GAMDEG!       Wind direction (input from the WPF).
prob! ! Probability from: WPF, distributions of ice thickness and azimuth angle               
rPos! ! Radial position when the ice left the blade.
Arf! ! Aerodynamic reference area
thick! ! Ice thickness (called c in the derivation of the reference area)
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3.4 PlotPepper:
The output files from Kastis6 are next fed into a program called “plotPepper”. It outputs a proposed 
classification of mass and momentum, based on the maximum and minimum information in the diagnostic 
file from Kastis6. Both of mass and momentum contain values from very small to quite big. To put these on 
an understandable scale it turned out necessary to use the 10logarithm of the mass and momentum values as 
explained in Sect. 2. The classification can be modified by the user on line, in response to a dialog, if 
necessary. The major part of the classes file appears next:

 *   Output from program plotPepper
 *   ******************************
 *   May 1, 2012 11:50:23  
  
File: classesA4.txt

Number of blades =  3
   *** Mass classes ***
 -------------------------
  Number   Class limits
 -------------------------
     1        0.00080
     2        0.00100
     3        0.01000
     4        0.10000
     5        1.00000
     6       10.00000
     7       11.16000
 
  *** Momentum classes ***
 -------------------------
  Number   Class limits
 -------------------------
     1        0.00470
     2        0.01000
     3        0.10000
     4        1.00000
     5       10.00000
     6      100.00000
     7      372.67999
 -------------------------

Again the number of blades appears without a purpose. This is just one of many features of a program that is 
academic and under development. I.e. it is far from commercial standard. This is in fact so also for the other 
programs in the program chain. It also means that the technique to run the programs requires the knowledge 
and vigilance of the creator to produce the correct results.

plotPepper also outputs plots showing the ground hits for all throws within a class. The output emerges as 
ground pepper strewn over the dartboard while plotPepper works its way through the big file from Kastis6. 
Typically five to six minutes are needed to complete the plotting. This is, however, of no consequence for the 
probability/number-of-ground-hits issue. The plotting is designed to enlighten the analyst as to what sort of 
pattern the pepper portrays. From these charts it appeared that 30° sectors must be used as dictated by the 
wind table set of directions and seen in Fig. 1.

3.5 dartboardProb:
The big file from Kastis6 and the classes file from plotPepper are used as input to program “dartboardProb”. 
dartboardProb generates a text file containing the probabilities for all dartboard panes for both of the classes 
for mass and momentum. The first half is valid for mass, while the second  is the corresponding momentum 
information. A small excerpt from the beginning an output file (of about 32 pages) from dartboardProb 
follows:
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  * Created: May 7, 2012 16:26:16    
 * This is a probability file from program dartboardProb.
 * File name at time of creation = paneProbA4.txt                               
                
  
 * Catch area definition:
    Max radius = 611.0
    Number of spokes = 12
    Number of circles = 13
  
 * Probabilities of mass: 
   ********************* 
  
    Mass class = 1
    Interval = 0.8000E-03 0.1000E-02
 *--------------------------------------------------------
 *   Spoke     Circle    Probability  Probability/paneArea
 * -------------------------------------------------------
      1        1        0.24220E+00    0.41881E-03
      1        2        0.12731E+01    0.73379E-03
      1        3        0.14234E+01    0.49226E-03
      1        4        0.10257E+01    0.25338E-03
      1        5        0.60779E+00    0.11677E-03
      1        6        0.41100E+00    0.64608E-04
      1        7        0.20218E+00    0.26893E-04
      1        8        0.82677E-01    0.95308E-05
      1        9        0.30914E-01    0.31444E-05
      1       10        0.80616E-02    0.73367E-06
      1       11        0.13615E-02    0.11210E-06
      1       12        0.29416E-03    0.22115E-07
      1       13        0.00000E+00    0.00000E+00
  
      2        1        0.21278E+00    0.36794E-03
      2        2        0.13266E+01    0.76464E-03
      2        3        0.13691E+01    0.47347E-03
      2        4        0.10142E+01    0.25052E-03
      2        5        0.65763E+00    0.12635E-03
      2        6        0.48806E+00    0.76721E-04
      2        7        0.28054E+00    0.37316E-04
      2        8        0.13718E+00    0.15814E-04
      2        9        0.64989E-01    0.66104E-05
      2       10        0.20486E-01    0.18644E-05

The third column is still headlined “Probability”. But, it might as well be called “Number of ground hits”. It 
seemed, however, convenient to use the shorter word Probability. The two columns for probabilities are also 
referred to as probability of type P1 and probability of type P2. Even though the word probability is used 
throughout this report the true technical meaning is number of ground hits.

3.6 plotProb:
The probability text file, as described in the previous subsection, contains the important result of this study. 
Since lengthy tables of numbers are difficult to use for an impression of overview, and therefore 
interpretation, the plotProb program was created to make these things easier. There is, however, a difficulty 
arising from this decision. It has to do with shades of color.

The basic idea is to assign a light color to a low probability. Increasing probability numbers should then give 
the impression of higher probabilities. After experimentation it was discovered that a maximum of seven 
shades of the same color can be used. Trying eight shades made interpretation difficult, because some shades 
appeared too similar. This was emphasized when such a color scheme was printed. Printer outputs are 
generally not sufficiently faithful to the colors of the computer screen.
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Since it would have been attractive to be able to represent the probabilities in perhaps eight shades an 
additional color other than blue was tested in the same scale. The result, however, appeared to be slightly 
confusing and the idea was therefore abandoned.

It should be noted that four categories of classes exist. The two classes of mass and momentum respectively 
have, under their definitions, two classes of probabilities to be coined sub-probabilities. The sub-
probabilities, P1 and P2, are distributed on a scale just like the distributions of mass and momentum. That is 
the reason for grouping even the probabilities into sub-probability classes. The numbers seen above, in the 
text file, are thus never directly seen in the color coded charts directly. Instead probability of both types P1 
and P2 are fitted into their appropriate class. Then the class* is color coded and applied to each dartboard 
pane. This is the background for the dartboards seen in the results section of this report.

4. Algorithms
4.1 Model ideas
Fundamentals:
The following statements are fundamental in this study.
The probability of ice on the “full” aerodynamic length of the blades = 100%.
The probability of a throw from a given blade station (throw station) is 100%.

Number of blades:
The blades are considered identical concerning the build-up of ice. Each blade thus contributes identically to 
the ice deposits on the ground, because all throws are deterministic. This allows the analysis to be limited to 
one blade and the probability results are simply multiplied by the number of blades, see Appendix 5. The 
actual multiplication is not carried out in the KASTIS6 (Step 1) program. This should be done after all 
calculations have been carried out by the KASTIS family of programs.

Geometric issues about ice:
A discrete number of radial stations (nBE)  were used for the release of the ice blocks. The ice block was 
sometimes subdivided into smaller fragments because of the impulsive onslaught of the wind relative to the 
ice at the moment of release. Before release the ice is of course stabilized by the blade surface, while at the 
time of release different parts of the ice block will experience different dynamic pressures. The difference in 
dynamic pressure, resulting in a force distribution and a bending moment distribution, is modeled in a 
simplified way to accomplish the cracking of the original ice released, see Appendix 4. Cracking of course 
causes the geometry to change and the calculation method takes this into account partly by assigning the 
notation a to the longest side of the fragment and b to the shorter. The thickness (c) remains the thickness.

The part of the blade between radial stations is referred to as “blade elements”. The length of each blade 
element will thus determine the initial radial length (a) of the corresponding original ice block. This length is 
also equal to the maximum ice block length, maximum with respect to the cracking in the air, which will 
create smaller length ice shards. 

The release point radius of the ice is placed at the radial mid-point between stations. There are thus nBE 
blade elements and as many ice release points. The root part, being excluded as an ice ejector, is thus 
determined by the first blade station.

One input quantity sets the fraction of chord length where ice exists. This results in a number for the measure 
b, the breadth of the ice sheet -  depicted in Appendix 1. This measure is not treated as a stochastic variable. 
Only the thickness is.

There is an inherent difficulty in obtaining a known accuracy in this method for the ice geometry. The only 
way to approach a solution is to study actual events where ice was or is being thrown. The events should 
preferably be taken up by a video camera and the frames studied one by one where the events of interest 
occurred. Conclusions from such studies will suggest the numerical settings of both input and model 
parameter values. At the time of writing this text there are no such data available.
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Gauss distribution of the ice thickness:
The absolute ice thickness probability is assumed to be Gauss distributed and must be defined in input. The 
input quantities are the size of the standard deviation, of the ice thickness (c), and number of realizations of 
the thickness. The input value of the maximum ice thickness, in the distribution, is modeled to coincide with 
3!. Only the right half of the Gauss bell curve is used because the other half is negative. The chord is 
preferably obtained from the relevant blade or possibly estimated from similar blade geometries. In the study 
presented here a photograph of a Siemens blade was used as a basis for obtaining the approximate chord-vs-
radius typical data and the chords were normalized using the tip radius, see App. 3. The author makes no 
claim to accuracy in the resulting geometry of the blade, which is only “sketchy”. But, considering other 
approximations in the model this should cause no disturbing error of the final results - because in truth there 
is no way to check any accurate behavior of any general ice geometry.

The blade azimuth angle at ice release can be Gauss distributed or have a constant distribution as chosen in 
the input. 

The combination of wind speed and wind direction, from meteorologists, is available and assumed valid for 
winter conditions. 

A Gauss distributed quantity is modeled to be divided into discrete probabilities inside of three standard 
deviations (3"). By input choice this may also be, but was not in this study, the model rule for the 
distribution of throw position azimuth angles. The sum of the discrete probabilities is forced to be exactly 
equal to 1.0. This is accomplished by modifying the flank 
probabilities a little to include the minute amount of 
remaining probability outside of the three ". 
 
The present implementation, in the ice thickness area, is 
to use a Gauss distribution, whose average value is zero. 
Only the possible positive side is used. Since only one 
half of the bell curve is used its ordinate values are 
multiplied by 2 in order to make the area under the curve 
equal to 1.0, see Fig. 5. 

The Gauss curve can be approximated by a series of 
vertical bars of equal width. The width, of each bar, is 
used from the left limit to the right limit to integrate under 
the curve. The result is the probability, that the ice thickness 
will be in the interval from the left to the right limit of the bar.  The approximation can also be 
seen as a discretization of the curve. In the model the corresponding discrete representative 
thickness values were chosen to be the mid-points of the individual intervals, which are pointed 
at by the triangles under the ordinate.

Fig. 5 displays an example with 7 discrete ice thicknesses and correspondingly 7 probability numbers.  It can 
be deduced, from a mere glance at the figure, that if the number of bars is increased it has the consequence 
that the first bar (corresponding to the lowest ice thickness) becomes narrower, causing the leftmost triangle 
to move left. Therefore the lowest ice thickness will be lowered. Analogously the highest ice thickness 
increases when the number of bars is increased. Yet, as pointed out above, the sum of the discrete probability 
values is exactly 1.0. One consequence of the method is that ice thicknesses are not known beforehand.

The reason for choosing the normal curve in this manner was because it is simple to treat and because there 
was no guidance to the author to a better theory. The corresponding code was implemented in Kastis6.

Material characteristics of ice:
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The material characteristics of ice having a temperature near 0°C are available in the literature. The ultimate 
stress in tension varies around 1 MPa, the lowest value of course being 0 and colder ice having values of 
several MPa. The input includes an ultimate stress variable. Then bending moments can be crudely estimated 
during the release phase where breakup of the ice occurs. The break-up model is described in Appendix 4. 

The ideal would be actual statistics from a site where comprehensive ice throwing has occurred on soft and 
deep snow, followed by an educated gathering, measuring and sorting of the pieces found. Sources of this 
type of information, although very valuable, are also very sparse not to say non-existent. 

4.2 Wind:
During the throw the natural wind (V) varies as a function of the height above the ground. For a flat and 
horizontal ground various formulae, originally extracted from measurement and analyzed to fit in a 
mathematical form, exist to describe the variation with height. A simple and practical application, of the 
various expressions seen in the literature, is the following.

! V (x) = VH
x
xHub

!
"#

$
%&

1/7

where x is the height above ground and VH is the wind velocity at hub height. In order to adapt to real 
circumstances the exponent should be changed to reflect the atmospheric stability. The 1/7 used here is valid 
for neutral stability. The formula was implemented in this study with the added feature that wind velocity 
below the tower foot was set equal to zero. However, since very small and light ice fragments were shown to 
travel a long way at 28 m/s of wind speed, in excess of 600 m, it might be attractive to use a more refined 
wind model for future studies of the same nature. For this purpose the following expression can be used.

! V (x) = Vhh ln
x ! h0 + z0

z0

"
#$

%
&'

 ! !

Here x is the height above a flat and horizontal ground. Vhh is a reference wind which causes the hub height 
wind velocity V(xhub) to be the one selected for each wind case. It is calculated from inverting the expression 
such that

! Vhh = V (xhub ) / ln
xhub ! h0 + z0

z0

"
#$

%
&'

h0 is the height of the “zero plane” relative to that of the tower foot. Instead of tower foot height, as a base 
for the formula zero height, a horizontal plane above the tower foot height is sometimes considered to be the 
zero plane from which the height should be counted. Application of this idea is suited when e.g. a forested 
landscape constitutes the basis for the wind variation with height. Then an approximate 2/3 up the average 
tree height is being suggested as the zero plane height. Values of z0 can be obtained from Appendix 2.

Undulating ground is considered in this study. Therefore an approximate extension, to heights below the 
ground at the tower foot, can be made. There are two different cases that come to mind when this problem is 
pondered. One is to consider only the height above ground regardless of the variable height of the ground. 
This would require a recalculation of Vhh at every time step of the simulation. This ascertains that the wind 
has some finite value even when the ice block is lower than the tower foot (or if applicable the zero plane).

The other case to consider is the wind velocity = 0 when the ice block is below the level of the tower 
foundation, as is the case in the present study, although with the  exponential formula.
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4.3 Aerodynamics
The aerodynamic force, acting against the relative wind, is obtained from the following expression.

! D =
1
2
!W 2Aa "CD

where the air density ![kg/m3] is variable with the meteorological pressure, temperature and altitude above 
sea level. Normally an industry standard atmosphere is used in contexts like this. For a standard atmosphere 
only altitude is necessary to extract ! from a standard (std) atmosphere table. At sea level std ! = 1.225 [kg/
m3]. This number was used in this study. W[m/s] is the momentary relative wind velocity vector at an 
arbitrary time step in the integration of the journey.  Aa is the reference area derived in App. 1.  For the drag 
coefficient CD a standard value equal to 1.0 was used. 

4.4 Dynamics:
The characteristics of the ice is determined from the input values leading to the radial extent of the primary 
“mother” ice block. The following break-up into smaller fragments will lead to the final shape used for 
assessment of weight, aerodynamic reference area and the trajectory.

The ice block, ready to be thrown, is modeled to leave the blade at an initial velocity equal to the velocity of 
the radial mid-point of the blade element from where the block separates. Its subsequent absolute velocity is 
governed by the vectors of gravity force and resistive drag leading to a curvilinear trajectory, which is 
integrated per time step. The integration, over a single time step, is carried out twice (from acceleration to 
velocity to position) using a Runge-Kutta 4th order method. Monitoring both height of the block (hb) and 
height of the undulating ground (hg) makes it possible to calculate the difference dh = hb - hg. When dh is 
found to be negative the corresponding throw dynamic calculation is interrupted. Then the ground hit 
coordinates are found by linear interpolation using the situations in the two last time steps. The ground hit is 
represented by one text line, in the output file, including the quantities described under the Kastis6 section 
above. There is one line per ice fragment thrown.

6. Turbine owner risk assessment
A slightly different type of dartboards, where the class probabilities is divided by the pane area, has also been 
generated. The quotient was given the notation "P2". The danger for an object on the ground, which/who is 
present in the pane, when ice is being shed, is now easy to calculate. Assuming that the hit area of the object 
is AObj m2 gives

! P0 = P2 !AObj      =
P1
APane

!AObj
"
#$

%
&'
! ! ! ! (1)!

where P0 is the probability of a hit provided there is one object in the pane area.
This is also the appropriate place to mention that the final probability, for the object, also depends on the 
frequency of sensitive objects being present in a pane. This is the responsibility of the turbine owner and the 
activity needed is as follows:

Table of site specific variables:
1. Define an area C around the turbine, which is a circle having a radius R equal to twice the tower height 
2. Define the fraction of the year (days/365) when icing conditions can occur (k ) 
3. Find out how frequently (times/month) parties of people, animals, or vehicles, pass through C during the 
icing period (f )
4. Find out how large the average party size is (can be a number with decimals trailing the period) (NAve)
5. Find out how long time (hours/visit) these parties tend to be present in C (Tpres)
6. Calculate (find) the area of the pane (APane)
7. Number of ice throw events/year NEvent = 3
8. Number of years of the period of interest NYears = 1

The probability of an object being present in the pane area when the ice falls is PPres. This is equivalent with 
the number of objects (mathematically smeared to be) permanently present in the pane area during the icing 

14



season - a number considerably less than 1 if people or vehicles are under consideration. (The duality 
between probability and "number of" reappears.) PPres is calculated from:

! PPres = k !12 ! f !NAve !
TPres
365 !24

!
APane
"R2

! ! ! (2)

The probability per year and per ice throw event is called P.

! P = P0 !PPres ! ! ! ! ! ! ! (3)

This is the probability/year/(throw event) that an object is hit by an individual ice block of the class. It is 
emphasized that if there are more than or less than one throw event per year, or a certain period of time in 
excess of one year is considered, the value must be multiplied by number of events/year (NEvent) and (NYears).

There is also a possibility to decrease the risk by establishing safety measures near and on the site. These 
could be information boards informing the public what upwind and downwind means and that the downwind 
side is the dangerous one. Also general icing information, at weather conditions described, as well as the 
danger of falling ice from a parked turbine could be part of the information. Signs of warnings spread out in 
the terrain and fences reduce the risk even more. The reduction can be expressed as a factor (fSafety). It can be 
noted that the safety factor is = 1.0, i.e. there is no risk reduction when animals are the objects of an analysis.

The encompassing formula including all ingredients is:

! PPane = P2 ! AObj ! k !12 ! f !NAve !
TPres
365 !24

!
APane
"R2

!NEvent !NYears ! fSafety ! (4)

This expression is used to calculate the risk of hit in one pane area. The only numerical change between 
panes is in P2, Tpres, APane and fSafety. A practical application is therefore to separate P2, Tpres and fSafety from 
the rest of the formula. The rest is denoted B. An algorithm for producing a basis for cost and business 
agreements could be designed as follows:

Start of algorithm:

1. Preparation
! Settle for a KASTIS output based on the P2 concept
! Settle for a class
! Settle for the site specific input variable values
! Prepare a list of values of Tpres
! Prepare a list of values of fSafety

! Calculate B from: 
B = AObj ! k !12 ! f !NAve !

1
365 !24

!
1

"R2
!NEvent !NYears =

4.3604E # 04 ! AObj ! k ! f !NAve !NEvent !NYears / R
2

! (5)

2. Next pane
! Get the appropriate P2 value
! Get Tpres from the list
! Get fSafety from the list
! Calculate PPane from:  PPane = B !P2 !TPres ! APane ! fSafety ! ! ! (6)

! Save PPane suitably connected to the appropriate pane coordinate system (i, j), see Fig. 1.
! If (there are panes left for analysis) then
! !  go to 2
! else
! ! goto 3
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! end if
3. Next class
! if (all classes have been used in the analysis) then
! ! END/STOP
! else
! ! Sum up the Ppane values to be the probability to hit a person of this class.
! ! Choose a new class
! ! go to 2
! end if
End of algorithm

Numerical example. Object is human:
From figure 9 we have:
Mass class 5: 1kg < mass < 10kg Probably lethal. 
Probability class 3: 10-6 < P2 < 10-4 To be conservative P2 = 10-4 is chosen.
Pane position W - WSW, 6th pane from the center
APane= 6000 m2 
AObj = human hit area 0.5 m2

P0 = P2*AObj = 10-4 * 0.5 = 0.5E-04
k = 0.42  (= 5 months)
f = 6
NAve = 2.5
TPres = 0.33 h
R = 180 m
NEvent = 3 Ice events per season (per year)
fSafety = 0.6

The result for this one pane is: 1.51E-8

7. Future development of KASTIS
Many ideas for improving the KASTIS code package has been pondered by the author. Some of the more 
important ones are described here.

The group of programs of KASTIS should be fused into one program. There are some gains in calculation 
speed to be expected when this is completed. Besides it will be easier for the user to maneuver between the 
different parts.

The number of blade elements could be subject for application of a probability distribution. The present 
equidistance feature of the blade elements, as of the present model, could be changed to reflect some future 
findings that e.g. the primary ice blocks near the root tend to be longer than those of the tip region. Presently, 
however, there is no knowledge of any such indicators.

The ice thickness, presently assumed constant with the radial coordinate, should be thinner toward the tip. 
Photographs indicate this fact. 

The output from KASTIS6 includes, on the output line, mass and momentum. Both refer to the ground 
collision velocity. Future development of the KASTIS system will also include the energy of the ice clumps 
at  the ground hit event. A similar set of dartboards, valid for energy, will then result.

The risk assessment, according to the section on this theme, should be coded for ease of handling.

8. Main results
The ground has variable height according to an example of a terrain map appearing in Fig. 3. When the final 
analysis results from using the terrain map and flat ground were compared the difference was found to be 
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small. The difference in the surrounding terrain patterns were, however, quite different. This indicates that 
the terrain has a relatively minor influence on the outcome of the ice landing positions. This is explained by 
the fact that the wind velocity, below the tower foot height was set equal to zero by the algorithm. Thus the 
wind does not drive the ice below this level causing the horizontal component of the velocity to approach 
zero.

Appearing in the following figures are both of mass and momentum (2 of) with probability type 1 and 
probability type 2 (2 of) giving rise to four diagram types. Then there are 6 classes in each of the four 
combinations giving rise to 6*4 = 24 diagrams. 
The reader is made aware of the fact that the color 
plots are simplified representations of the 
probability text files generated by the 
dartboardProb program. This file, the source of the 
plots, contains more detail. The probability files 
were found to be too big to be included in this 
report. The two cases presented, having one 
probability file each, would have required about 
64 pages for this purpose.

The analysis results proper are preceded by 
example results from the plotPepper program. 
Since the method to produce these diagrams was 
intended only as an intermediate step in the 
creation of the total method only a few are shown 
in this context. They have no bearing on the final 
results.

Fig. 6 shows the ultimate influence from the wind 
because the ice fragments are of small size, as 
seen in the mass class definition. The small 
fragments are not noticeably affected by the 
ejection velocity. They rather attain the natural 
wind velocity almost immediately after release. 
As a result they leave their 3D ejection point and 
drift with the wind in a straight line in this top 
view. In reality the drifting is affected by natural 
turbulence and a minor variable lifting force, 
which would smoothen the sharp outlines of the 
different spoke patterns. But, the largest 
smoothening effect, in the natural case, would 
come from the continuous character of the 
direction of the nacelle.

The paneling, chosen for the catch area 
definition, represents 12 wind directions. These 
were used for the throwing procedure. It is seen 
how the ice landing positions occur on and 
around the radials giving the visual impression 
that there is no ice falling between these 
artifactual spokes. But, this is expected behavior 
simply because an infinite number of wind 
directions were not available from the wind data 
file.
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Fig. 7 is a zoomed-in picture of the heaviest mass class. In relation to Fig. 6 it is demonstrated how the 
heaviest pieces of ice are collected around the turbine. The remotest positions are at about 140 m from the 
tower. 

The difference in throwing patterns, between the two pictures, is also to be referred to the ice breaking 
mechanism, where the dynamic pressure is the driving force. Since the dynamic pressure depends on the 
radial position ice release velocity squared, its influence is greatest at the tip of the blade. Thus, the further 
tipward the smaller the fragments. As a consequence the heavier ice blocks released from the vicinity of the 
root have a low initial velocity, because of the small radius, causing short throw lengths.

The characterization of the difference of the ice throwing patterns is very sensitive to the assumed value of 
the ultimate tension of the ice. In an otherwise equal study an increase of ultimate tension will give rise to 
longer throws of the heavier ice blocks. Another consequence would be that the total number of throws 
would be reduced, since the fragmentation would be less pronounced.

Two examples out of the many cases calculated follow. The mass classification was chosen for presentation. 
All plots in figure 8 and 9 represent one given input set. Figure 8 shows the same set for probability type 1. It 
is provided for reference only.

18



Figure 8 - Probability type 1 - Mass classes
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Figure 9 - Probability type 2 - Mass classes
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Appendices
Appendix 1 - Derivation of effective aerodynamic reference area
The aerodynamic assumption is that an object with sharp corners has a drag area, which is the projection on a 
plane, whose normal is parallel to the relative wind. The relative wind is the wind that the object “feels” in its 
exposure to the air during travel. That wind is composed of the free stream wind vector, at the position of the 
object, minus its traveling velocity vector. The negative of the velocity vector is needed as realized from say 
a bike ride, when the biker moves forward but the wind is in the face of the biker. Thus the bike rider’s 
velocity must be negated to represent the aerodynamically effective wind.

It is hypothesized that the ice chunk tumbles such that it it has time to expose all sides of itself to the relative 
wind. On the average, therefore, it will expose its average projected area to the wind. The resistive force drag 
of the air is directed as the relative wind and any lift force is directed perpendicularly. But, for the same 
reason as for the exposure of the area, the lift will, on the average, be pointing in all directions while 
traveling toward the ground. Therefore it is concluded that the net of the lift, as an average during the throw, 
can be ignored as a model assumption. This leads to the important consequential assumption that lift can be 
ignored altogether. The force acting on the ice object is therefore driven by gravity and drag only.

The figure shows a view of the model ice block being seen from a very remote point P. The projection of the 
block, on a plane tangent to a sphere in P, is the aerodynamically active area according to the model. The 
stylized ice block is modeled to have its coordinate axes parallel to its sides. The upper surface ab is seen 
from P as Aab as follows.

! Aab = a !bcos" ! ! ! ! (1)

The angle " is the angular deviation from the normal. The other side projections are obtained analogously.

! Aac = a !bcos" ! ! ! ! (2)

and! Abc = a !bcos" ! ! ! ! (3)

The basic coordinates are " and #, therefore $ and % must be substituted. But, first P, Q and S must be 
expressed as vectors.

x

y

z

sin(  )r

S

Q
O

P

a

b
c

r
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! P =
r cos! sin"
r cos! cos"
r cos#

$

%
&

'
&

(

)
&

*
&
=

r sin# sin"
r sin# cos"
r cos#

$

%
&

'
&

(

)
&

*
&
! (4)

! Q = 0,r,0( ) ! ! ! ! ! (5)

! S = r,0,0( ) ! ! ! ! ! (6)

!
 
cos! =

PiQ
PiQ

= cos" cos# = sin$ cos# ! (7)

!
 
cos! = PiS

PiS
= cos" cos# = sin$ sin# ! (8)

The average ice block area Aref is obtained from the idea that an infinitesimal spherical area at P functions as 
a weight coefficient when the block is viewed from P. The complete integral, according to this view, must 
then be divided by the whole area of the sphere. However, because of the polar symmetry of the problem, 
only 1/8 of the sphere need be used for the integration, because the same part integration repeats eight times 
if the whole area is used for integration. The surface area of the sphere is 4#r2. One eighth of this is $#r2.

The average area is therefore

! Aref =
1

1
2
!r2

Aab + Aac + Abc( )
"=0

90°

#
$ =0

90°

# r %d$( ) r sin$d"( ) ! (9)

which, after integration and insertion of the limits yields the following simple expression.

! Aref =
1
2
ab + ac + bc( ) ! ! ! ! ! (10)
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Appendix 3 - Obtaining chord as a basis for ice mass calculation
A simple assumed geometry is defined to be valid for all blades. Its length is 1. The measures must therefore 
be scaled by the tip radius.

The coordinates are:
-----------------------------------
      x ! chord/(tip radius)
-----------------------------------
   0.025     0.06
   0.1 !     0.06
   0.2 !     0.093
   0.28       0.093
   1!     0.02
----------------------------------

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!" !#(" !#$" !#)" !#%" !#*" !#&" !#+" !#'" !#," ("

!"#$%&

Note: The x and y axes are not equally scaled.
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Appendix 4 - Ice fragmentation in the air
As soon as the ice leaves its position on the blade it is exposed to a distribution of variable dynamic pressure, 
which acts to accelerate the ice and also to cause a bending moment. The infinite variability at this event 
cannot be replicated. Instead a rudimentary simplification will have to be relied upon in order to create an 
algorithm. The following ideas are the foundation for this algorithm.

The simplified shape of an ice sheet is seen in Fig. 1. It is assumed that only one end of the sheet is affected 
by the dynamic pressure at release from the blade. The ultimate tension "u of the ice will be used to 
determine the breaking position, provided the ice breaks at all.

!
The structural bending moment is assumed to be symmetrical such that the tension, on the lower side of the 
plate, is the negative of the compression on the upper side. In a view of a piece of the ac side the tension 
distribution varies as illustrated in Fig. 2. In reality the ice ultimate compression has a higher numerical value 
than that of the tension value. This fact is not used in favor of a simpler analysis.

! ! ! !
The ultimate structural bending moment is obtained from the following expression.

! Mu
s = 2 ! y "b "dy

0

c /2

# ! ! ! ! ! (1)

Using! ! (y) = ! u
y

c / 2
! ! ! ! ! (2)

where &u = ultimate tension. We obtain

! Mu
s =

4b
c
! u y2 dy

0

c /2
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4b! u
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&
'(
3

=
1
6
bc2! u ! (3)

The external moment, caused by the wind load, is calculated from the assumption that the right end, of the 
ice sheet according to Fig. 1, is firmly attached to an imaginary wall. This condition will be relaxed below, 
but it is used initially for the sake of derivation of the equations.
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The external bending moment, from the wind loading, is obtained from the following expression.

! dM = (s ! x)df ! ! ! ! ! (4)

s is the x coordinate where the bending moment is evaluated. Using the aerodynamic pressure P we have

! df = Pbdx ! ! ! ! ! ! (5)

Hence

! M = dM = pb(s ! x)dx = pb sd !
1
2
d 2"

#$
%
&'

0

d

(( ! (6)

Setting the two moments equal and extracting the point of moment evaluation (s) yields

! su =
c2! u

rf "6Pd
+
1
2
d ! ! ! ! ! (7)

where rf is a model reduction factor, selectable in the main input to Kastis6. It operates on the aerodynamic 
bending moment to account for the fact that the right end of the ice sheet is not fixed to a wall. Instead the 
mass moment of inertia, of the ice sheet, provides a resistive dynamic moment, which gives a lower bending 
load than that initially used. It is obvious that this model can be considerably improved upon.

The following figure was used in support of the development of this simple model.
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Eq. (7) has a graphic interpretation following the arrows from the bending moment axis to the solution of su. 
It is seen that the absolute of the moment, between 0 and d/2 will always be a small number. Moreover a 
bending moment solution greater than a/2 is meaningless because the same solution is obtained if the left 
part of the ice sheet is fixed to a wall. These observations together indicate that a solution, according to Eq. 
(7), is accepted only if su is in the interval accordingly: d / 2 < su < a / 2 . Else there is no break. 
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Before the breaking analysis is started the sides of the fragment are reorganized such that the longest side is 
called a and the shorter side is called b, wile the c measure for thickness is left unperturbed. This 
reorganization corresponds to the view that the crack will always occur perpendicular to the longer side a.

The described procedure is repeated for the two fragments resulting from a break and the same rules are 
applied to the next generation fragments. In each such analysis the fragment under scrutiny can break or not 
break. Those that cannot break are saved temporarily in one storage location A, which can be thought of as a 
stack. Those that do break are stored as two fragments in another stack B. Then the fragment on top of the B 
stack is picked up and analyzed using the break conditions etc. Eventually the B storage will be empty. Then 
all fragments in A are thrown, one by one, using the standard throwing mechanism.
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Appendix 5 - Relationship between probability and "number of ..."
There is a duality between probability of the existence of a particular piece of ice and the number of 
manifestations of this particular piece of ice.  Ideas fundamental to the theory pertaining to the statistical part 
of the KASTIS program family is developed here.

A thought experiment based on a simplified model is used explain the idea. It consists of an imaginary one-
bladed wind turbine which is exposed to westerly winds only. It has one single radial position, e.g. the tip, as 
its throwing position. There is only one piece of ice at that position. There is only one throw event. The blade 
can only throw one lump of ice from either position of 6 or 12 o’clock and both of those positions are equally 
likely. Three basic conclusions about this situation can be made accordingly:

1. The general ground must be hit once 
2. The north half must be hit 0.5 times, where 0.5 is the probability P1.
3. The south half must be hit 0.5 times, where 0.5 is the probability P1.

The east-west going dividing line between north and south runs through the turbine footing. 

A three-bladed turbine, under the same simplified assumptions valid per blade, would therefore yield the 
probability P2 of hitting the north or south halves according to P2 = 3*P1 = 3*0.5 = 1.5 times each. From 
this simple extension of the model it is seen that the number arrived at, at the ground, should no longer be 
interpreted to be a probability. It has to be seen as a number of ground impacts.

The model investigated has similarities with the reality of a wind turbine. A wind turbine can throw ice many 
times, whereas the simple model did this only once. The similarity in this respect arises from a small shift of 
view. Let us relax the only-once prescription. In stead of stating that the model only eject ice once we can 
think of the situation as something occurring per throw occasion. This expansion of the model does not 
change the three conclusions above, provided we accept them to be true per throw event.

In conclusion it appears that n blades and m occasions would give rise to 0.5*n*m number of ground hits on 
either side - north and south. Furthermore, extending our model, it seems that the ice can be associated with a 
probability of its existence to be = 0.5. What if its value were to be P1= 0.3324 or P1 = 0.001234 or ... any 
number less than 1.0. What circumstances could provide such a twist to our model? A feasible reason could 
be that the forces of gravity and centrifugal effect coincide and reinforce each other at 6 o'clock, whereas at 
12 o'clock they counteract each other. The probability of ice release at 6 o'clock could then be say 0.6 and 0.4 
likewise for 12 o'clock. This would give the three-bladed "probability" P2 = 3*0.6 = 1.8 for 6 o'clock and P2 
= 3*0.4 = 1.2 for the 12 o'clock release position.

The learning form the latter thought experiment is that whatever the source of inherent probability P, that 
probability can be modeled as a number-of-occurrence figure. Looking at the more realistic operating wind 
turbine, its ice accretion and release thereof has the following background and characteristics.

Wind distribution:
There is a variable probability of the combination of wind direction and velocity. The wind table in the main 
text can be converted from frequency of occurrence to probability by dividing all numbers in the table by the 
total sum of occurrences. Let us call the resulting variable probability, in the bins of the table, Pw.

Azimuth distribution:
Another probability affecting the ice is where in its circular travel on the blade it is released. Its radial 
position on the blade is given in the input. But, the angular position (the azimuth angle) of the blade at 
release, is not given a priori. The probability of any azimuth angle is distributed. In the main text it is 
explained that two choices are available. Either a Gauss curve, centered on a given angle is chosen or a flat 
distribution can be applied. Flat means that any angle is equally likely. Regardless of choice of distribution 
let us call the probability, of release of the ice in an angular range, Pa.
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Ice thickness distribution:
The ice can assume different forms. But, all forms are modeled as a square angled block. Thus there is 
length, breadth and thickness to characterize the form of the initially ejected ice block. Length and breadth 
are specified in the input. But, the thickness is modeled to be distributed in a form based on the normal 
distribution. The particular ice block can thus assume any thickness within the scope of the chosen 
distribution definition. The corresponding probability will be called Pi.

Probability synthesis:
The probability (P) of an ice block having the attributes described above is calculated from P = Pw*Pa*Pi. 
The resulting value is an instantiation of an infinite amount of possibilities. Infinite amounts are not treated. 
In stead a number of instantiations, based on discretizations, of the probability distributions are applied.

Pw: The wind discretization is already inherent in the wind table. In the study winds between 4 m/s and 28 
m/s were used as input. This gives rise to nw = (12 wind directions)*(28-4+1 wind speeds) = 300. It is 
assumed that a turbine is always facing the wind as in a normal operation state.

Pa: The azimuth angles can, for comfort of mind, be expressed in clock hours. Reasoning on assumed flat 
distribution every clock hour is equally likely. Choosing 12 clock angles, to be the discretization rule, it is 
immediately realized that every choice has a probability Pa = 1/12. Choosing the Gauss option gives 12 
clock angles different probabilities, i.e. Pa is different between clock angles. na = 12.

Pi: The ice thickness distribution has only Gauss distribution available. 7 or 9 discretizations were used in the 
runs based on a consideration of balance between accuracy (many discretizations) and speed of calculations.
Let us ay that ni = 9

The total number of instantiations of all these combinations is = nw*na*ni = 300*12*9 = 32400 

There are between 50 and 200, say 100 ice fragments thrown from several radial positions amounting to 
3240000 individual ice clumps and flakes.

Method synthesis:
As for the simplified one-bladed turbine discussed above every ice fragment carries its own probability 
number. Also as in the simple case each ice clump's probability number in the active case can be taken to be 
the number of clumps of this particular type - a number much less than 1.0.

The simple turbine example included a dividing line from west to east thereby creating two sections. In the 
active case the ground around the turbine is more finely divided into sections or panes as seen in the adjacent 
figure. The following text will refer to such a pane. Therefore the pane has been magnified on the right in 
order to illustrate certain principles.
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The figure on the right is thus a pane littered with pieces of ice. Each piece has a set of numbers associated 
with it. The numbers of importance, in this context, are seen in the example "Ice data" boxes. Because of the 
large variation of mass, from 0.8 g to 11 kg, the masses are organized into classes of mass in order to reflect 
different levels of danger.

When classes of mass (or momentum when the velocity (V) is also used) are created the probabilities of all 
ice clumps, within the class, are summed to become the local probability of its class. The sum thereby also 
becomes the number of ground hits of the class. The output blue "dartboards" in the main text portray this 
probability in the panes in shades of blue. This probability number is denoted "P1" in the main text. Each 
dartboard represents one mass/momentum class. For damage assessment the momentum dartboards are the 
more important ones for damage analysis.
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