

Implementing a 3D CFD Model to Study the Performance of Porous Fences under Harsh Climatic Conditions

Yizhong Xu

&

Dr. Mohamed Y Mustafa

Yizhong.Xu@hin.no

Introduction

- Using wind tunnel experimental and CFD approaches to identify the key factors influencing the performance of wind/snow fences, and to contribute novel knowledge to optimal fence design for offshore oil industry;
- Financed by the Norwegian Research Council under project number 195153 (ColdTech);
- To acknowledge the contribution of the industrial partner: IKM dsc AS, Norway.

Applications of porous fences

The Ekofisk Platform in Norway

Wind Tunnel Experiments

Wind tunnel at NUC

Experimental set-up

Visualization

Limitations of WT Experiments

Advantages of CFD Application

3D CFD Simulation

Physical & Numerical Domain

Cross view of test section of WT

Testing porous fence

Numerical domain

Meshed domain

Mesh sensitivity Analysis

Validation of CFD Model

 The CFD results are in good agreement with the experimental results in general;

.

- CFD simulations overpredicted the reduction of velocity when compared to the wind tunnel results. The discrepancy between them is around 20% in general;
- The 3D CFD is proved to be sound.

General Plots

Absolute Helicity vortex core region

Shear Plot

Shear contours on the fence zone

• 2D model is not able to reflect it, that means that it requires stricter modifications of operating and boundary conditions, and varies almost in individual cases, which increases uncertainty of numerical results.

Wind Field Analysis

Velocity streamlines under different inlet velocities

Reattachment length	
Air flow	length (m)
10 m/s inlet velocity	1,22276
20 m/s inlet velocity	1,26442
30 m/s inlet velocity	1,52961

Data Acquisition

and

-3m)

2=

Y=0,

(X=0,

points

Å

Line-2

Z=1m)

(X=0, Y=0,

Axial direction

N

Conclusions

- The detailed set-up of the CFD model to investigate the wind flow behind a porous wind fence has been presented.
- A good agreement has been found between the CFD simulation and the experimental results. The CFD model has been proved to be sound.
- CFD simulations can overcome the limitations and weaknesses of wind tunnel experiments with flexibility, efficiency and low cost. Compared to 2D model, the 3D model is able to comprehensively reflect a full structure of air flow in the simulated domain.
- The 3D model is to be used for further studies of two-phase flow (with drifting snow).

Thank you for your attention!

