A novel model approach to test de-icing strategies and de-icing efficiency

Stefan Söderberg and Magnus Baltscheffsky WeatherTech Scandinavia AB

WeatherTech

Winterwind 2014 - Sundsvall

Introduction

A novel test of de-icing strategies and de-icing efficiency

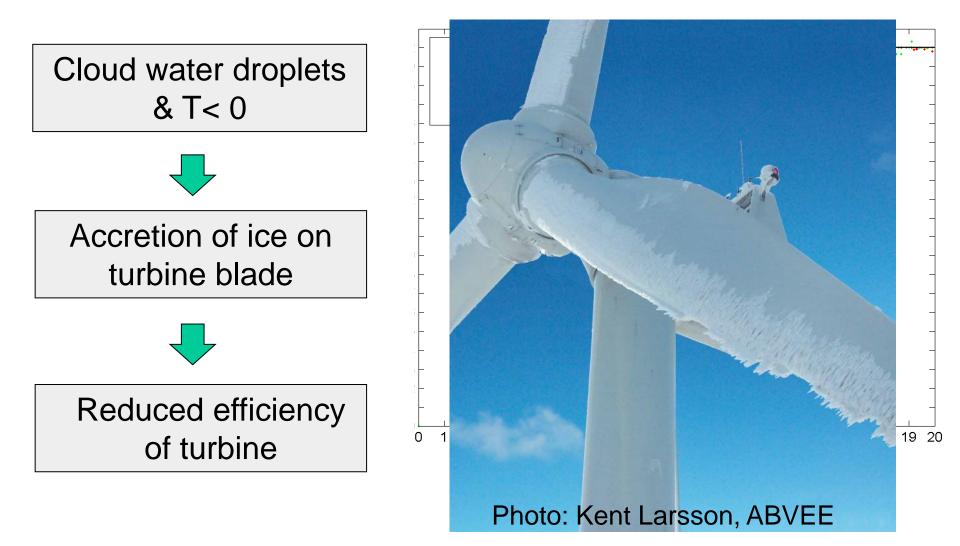
 how much can the production losses be reduced by installing a de-icing system?

A few (but a growing number) turbines with de-icing systems are offered today

- control system and detection varies.

Objective of presentation:

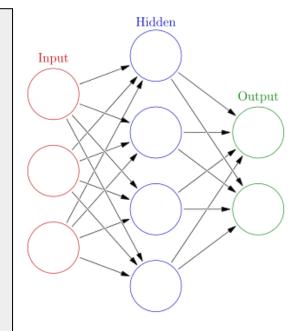
 a principal understanding of how a de-icing system can reduce production losses depending on system setup.

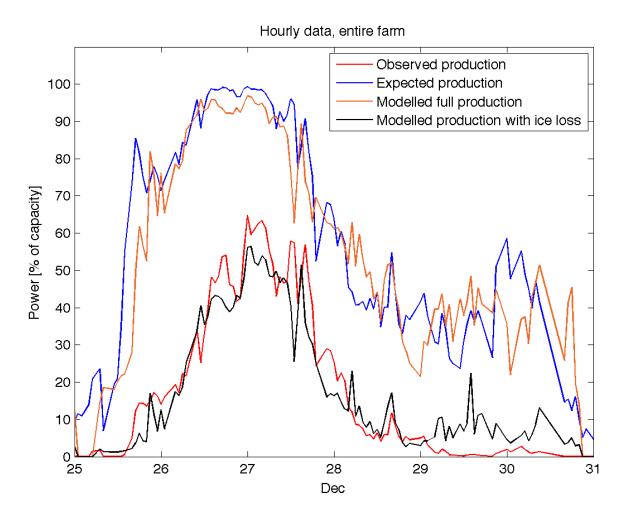

Winterwind 2014 – Sundsvall

WRF model data

Basis for the study

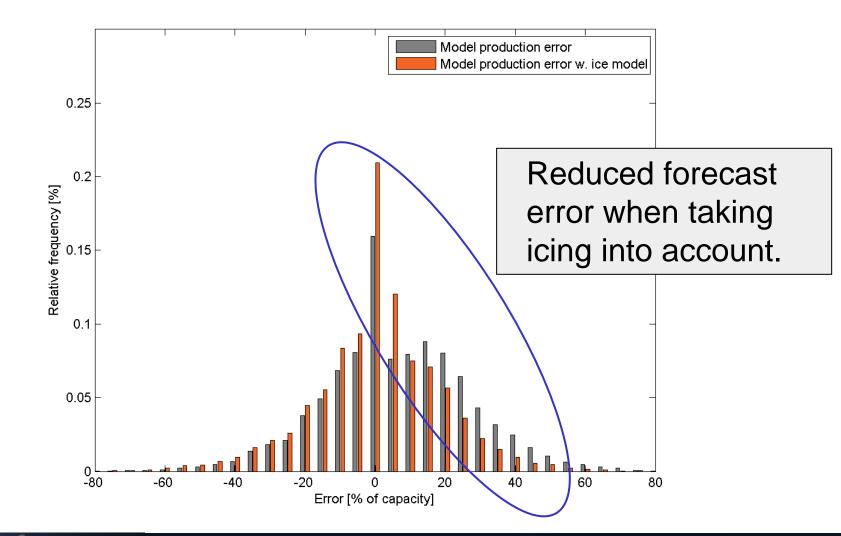
- Modelled atmospheric data from a high resolution WRF model run
 - www.wrf-model.org
 - 1x1 km² model grid resolution
 - One full year modelled, Sept 2012 to Aug 2013
 - Wind speed/direction, pressure, temperature, cloud condensates
 - Thompson microphysics, YSU PBL, Noah land surface


Production loss due to icing


Winterwind 2014 - Sundsvall

WICE – Weathertech ICE model

- Artifical Neural Network
 - Trained with clean and iced production
 - Mesoscale model data and modelled iceload as input
- Tested for different turbines and locations
- The production loss model can be used in two modes:
 - Site assessment (shooting blind). Possible to use different turbine types.
 - Forecasting. If available, site specific data can be used to train the model.



Icing event example

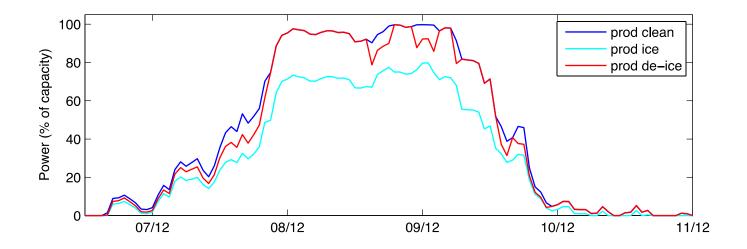
Winterwind 2014 - Sundsvall

Icing event example

WeatherTech

Winterwind 2014 - Sundsvall

De-icing model


A simplified model to describe a de-icing system. Omitted:

- overheating of blades
- shortage of power necessary for de-icing
- stand stills (health and security)

Base setup:

- De-icing started when ice has started to build on the blades.
- The turbine is able to generate power while de-icing
- Ice accreted during one hour is removed in the next hour
- The system can operate in all temperatures

De-icing model

Winterwind 2014 - Sundsvall

De-icing – results I

2012-09-01 to 2013-08-31, 100m hub height, generic 2MW turbine

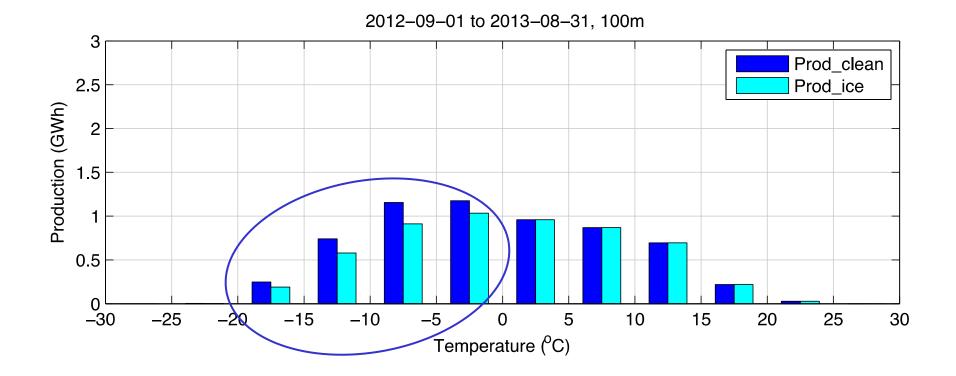
De-ice	Temperature	Detection	Prod_clean	Prod_ice	Prod_loss
case	limit				
	°C		MWh	MWh	%
-	-		6089.6	5484.3	9.9

De-icing – results I

2012-09-01 to 2013-08-31, 100m hub height, generic 2MW turbine

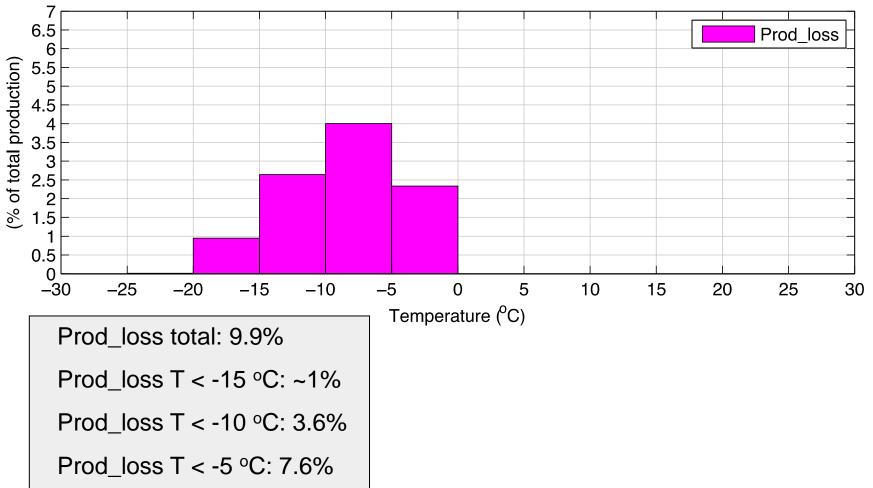
De-ice case	Temperature limit	Detection	Prod_clean	Prod_ice	Prod_loss
	°C		MWh	MWh	%
-	-		6089.6	5484.3	9.9
1	none	Ongoing icing	6089.6	5997.3	1.5
	-	ificant reduction losse			7

Winterwind 2014 – Sundsvall


De-icing – operating conditions

Temperature limits:

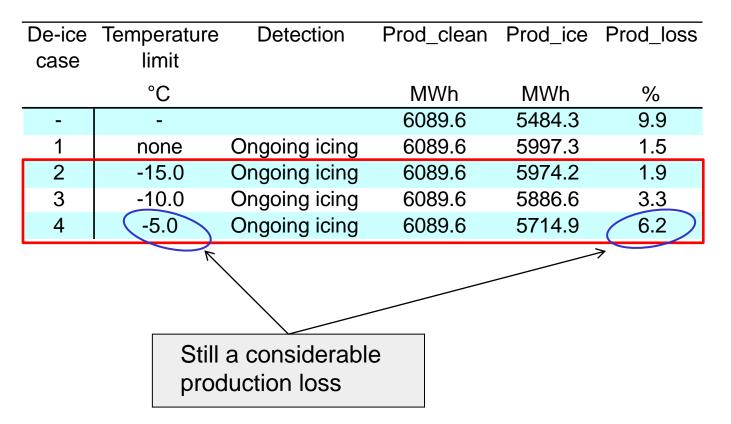
- Temperatures down to -5 °C
- Temperatures down to -10 °C
- Temperatures down to -15 °C


Winterwind 2014 - Sundsvall

Production losses and temperature

Winterwind 2014 - Sundsvall

Production losses and temperature



2012–09–01 to 2013–08–31, 100m

Winterwind 2014 – Sundsvall

De-icing – results II

2012-09-01 to 2013-08-31, 100m hub height, generic 2MW turbine

Winterwind 2014 – Sundsvall

De-icing – detection

Power loss:

- Deviations from the expected power for a given wind speed and power curve

Detection limits: production loss 5%, 10%, 15%, and 20%

De-icing – results III

2012-09-01 to 2013-08-31, 100m hub height, generic 2MW turbine

De-ice case	Temperature limit	Detection	Prod_clean	Prod_ice	Prod_loss
	°C		MWh	MWh	%
-	-		6089.6	5484.3	9.9
1	none	Ongoing icing	6089.6	5997.3	1.5
2	-15.0	Ongoing icing	6089.6	5974.2	1.9
3	-10.0	Ongoing icing	6089.6	5886.6	3.3
4	-5.0	Ongoing icing	6089.6	5714.9	6.2
5	none	P_loss 5%	6089.6	5967.4	2.0
6	none	P_loss 10%	6089.6	5946.8	2.3
7	none	P_loss 15%	6089.6	5929.9	2.6
8	none	P_loss 20%	6089.6	5892.9	3.2

Not as sensitive to detection limits as to temperature limits

De-icing – operation mode

In operation:

- The turbine is able to generate power while de-icing

Stopped:

- The turbine is stopped or idling during the de-icing cycle

De-icing – results IV

2012-09-01 to 2013-08-31, 100m hub height, generic 2MW turbine

De-ice	Temperature	Detection	Prod_loss
case	limit		in operation
	°C		%
-	-		9.9
5	none	P_loss 5%	2.0
6	none	P_loss 10%	2.3
7	none	P_loss 15%	2.6
8	none	P_loss 20%	3.2

De-icing – results IV

2012-09-01 to 2013-08-31, 100m hub height, generic 2MW turbine

De-ice	Temperature	Detection	Prod_loss	Prod_loss
case	limit		in operation	stopped
	°C		%	%
-	-		9.9	
5	none	P_loss 5%	2.0	10.3
6	none	P_loss 10%	2.3	7.4
7	none	P_loss 15%	2.6	5.9
8	none	P_loss 20%	3.2	4.5

Benefit of the de-icing system sensitive to detection limits if the turbine is stopped while de-icing.

Winterwind 2014 – Sundsvall

Summary

A well designed de-icing system will reduce the production losses

- A de-icing system should be able to operate in temperatures at least down to -10 °C.
- If the turbine is able to generate power while de-icing the benifit of the system is not as sensitive to detection limits as to ambient temperature. But, a few % can be gained if the detection limits are chosen wisely
- If the turbine is idling while de-icing, finding optimal detection limits for activation of the system is critical for the system performance.