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Motivation for work 
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The Challenge of ice assessment 

1. AEP losses from icing are often very 

difficult to estimate before turbine 

installation 

 

2. Typical shortcomings of on-site 

measurements (1yr is too short) and 

mesoscale weather models  

Both demanding & expensive 

 

 

Need: assess future iced AEP losses 

from long-term historical data simply 

yet robustly 

What is the 

connection??? 

Site Winter Met Ice P-loss IEA 

class 

2010 3.1% 2.5% 3 

2011 1.8% 0.5% 2 

2012 3.0% 2.1% 3 

2013-> 

11-12 2.2% 1.5% 2 

12-13 4.7% 5.0% 3 

2013-> 

Table. Measurements from met mast and turbine AEP losses [10]  

[10]: Recommended Practices for Wind Energy in Cold Climates, IWAIS 2013 

WIceAtlas 

[2] 

OR 

??? 

??? 



5 13/02/2014 

CC Market Observations 

 We have interviewed many wind farm owners in icing climates (eg 

Canada, Sweden, Czech…) suffering from ice induced production 

losses -> financial consequences 

 

 Root cause:  

 insufficent ice assessment (wrong or no ice instruments, too 

optimistic “gestimation” of AEP losses in finance phase etc.) 

MOST RISKS COULD HAVE BEEN ASSESSED IN ADVANCE! 

 

 Icing severity varies significantly from one year to another (mean 

icing ±200% vs mean wind ±15%) 

 

Market demads for simple & robust tool for ice assessment! 

Ice? On 

my site? 

Owner 
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Cold Climate Market size [9] 

Cumulative installed capacity by end of 2012 
[MW] 

Forecasted capacity 2013-17 
[MW] 

Low 
temperature 

Light icing: 
safety risk, 

some economic 
risk 

Moderate to 
heavy icing: 

economic and 
safety risk 

Low 
temperature 

Light icing: 
safety risk, 

some economic 
risk 

Moderate to 
heavy icing: 

economic and 
safety risk 

18,945 41,079 11,478 
  

20,025 
  

22,083 
  

8,003 

Total 69,000  (*) Total 45,000 – 50,000 

(*)  The total capacity is less than the sum of individual capacities because some of the sites have both low 
temperatures and icing conditions. 

[9]: BTM World market Update 2012 

30GW of new installations to icing conditions by 2017 

 Compare: new offshore 29GW by 2017! 
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Approach of SotA study 
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The approach 

To get a simple & robust ice mapping method: 

 

1. Start from turbine perspective; What is really important? 

 

2. Understand typical “in nature” icing condition and variations 

 

3. Connect above two and propose a simplified ice mapping method 
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The approach 

 State-of-the-art literature review with one key question: 

 

What is the SINGLE most important Makkonen icing rate 

formula parameter that has the largest impact on wind energy? 

 

 

 

 

 

 

 

𝛼1 = 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑒𝑓𝑓. 
𝛼2 = 𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 𝑒𝑓𝑓. 
𝛼3 = 𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝑒𝑓𝑓. 
w = water content 

A = object size 
V = flow speed 
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The approach 
 Assumptions for turbine blade ice ”model”: 

1. Disregard V and A as blades have tip 

speeds ≈ 40-75 m/s → wind turbine blade 

extreme efficient ice collector! Rime ice only 

𝛼1,2 = 1.0 

2. More ice mass, more aero 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
𝑖𝑐𝑒𝑑

𝑐𝑙𝑒𝑎𝑛
 

3. Simplify icing formula to 4 parameters: 

𝑑𝑀(𝐿𝑊𝐶, 𝑀𝑉𝐷, 𝑑𝑡) and T 

 

 

 

 

 

Goal: Find influence to rotor 

aerodynamics (lift CL and drag CD) 

# Brief Long name Description 

1 Ta ->T Temperature 

2 w -> LWC Liquid  water content How much water in volume? 

3 d -> MVD Median volumetric diameter What is droplet size? 

4 t Icing duration How long? 

Icing  cloud droplets 

𝛼1 = 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑒𝑓𝑓. 
𝛼2 = 𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 𝑒𝑓𝑓. 
𝛼3 = 𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝑒𝑓𝑓. 
w = water content 

A = object size 
V = flow speed 
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Results 
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Results 

-1) Icing wind tunnel measurements- 

Start of icing Light icing Moderate icing Extreme icing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1_202 

R1_601 

R1_621 

R1_607 

R1_1162 

R1_628 

R1_631 

R4_212 

R1_608 

R1_603 

R4_944 

R1_610 

2 min 

0-0.2kg/m 
6 min 

0.2-1kg/m 

15-20 min 

1-3kg/m 

20-25 min 

3-5kg/m 

8 scientific references (R1-R8) 

Total of +80 iced airfoil results 

 +50 lift (CL) curves 

 +30 drag (CD) curves 
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Results from SoTa 

-1) Icing wind tunnel measurements- 

R1_202 
R1_607 R1_628 R1_603 

C
L
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Results 

-1) Icing wind tunnel measurements- 

 Icing effect on CL & CD penalty factors 𝑓 𝐴𝑜𝐴 =
𝑖𝑐𝑒𝑑

𝑐𝑙𝑒𝑎𝑛
 

Goal: Use for iced turbine simulations for AEP & load evaluation  

 Clear pattern; 1) Higher AoA, more penalty! 2) Longer t, more penalty! 

 ΔCL-5..-50%, ΔCD+100..800% => BAD COMBINATION for wind energy! 

t=2min 

t=45min 
More 

penalty 

More 

penalty 

N=38 N=20 
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Results 

-1) Icing wind tunnel measurements- 

Statistical penalties used in new IEC 61400-1 ed4 cold climate DLCs 

for iced turbine simulation! [23] 
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Results from SotA 

-2) Meteorological measurements- 

Typical values present long-term (20-30yr) averages 

Time Location T 

[C°] 

LWC 

[g/m³] 

MVD 

[μm] 

Icing duration t 

[h] 

Ref 

max…min Min Mean Max Min Mean Max Min Median Max 

1960- US 0…-30  0.05 0.3  0.8 10 15 100 [11] 

1987-1990 Ylläs, FI -1…-13 0.07 0.19 0.43 8 12 20 [12] 

1985 Mount x, FR -1…-16 0.34 11 12 72 [13] 

1990-1996 Ylläs, FI -3…-6 0.09 0.31 0.43 12 15 20 [14] 

1995-1999 US -10 0.28 1 15 30 [18] 

2001-2004 Luosto, FI 0…-22 6 61 [15] 

2002-2003 Obers., AU 0…-14 1 7 45 [15] 

2001-2004 Tauer., AU 4 34 [15] 

1996-2004 Canada, US 0.1 0.14 1.0 <50 [16] 

2006-2008 Puijo, FI  … 0.039 3 7 17 [17] 

TYPICAL= -5 0.1 0.25 0.7 8 15 45 6 45   
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Icing sensitivity analyses: 

what is important for wind energy? 
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Results 

-Icing sensitivity to aerodynamics- 

 Vary 1 of 4 parameters at a time (others constant), look at CL & CD penalties 

 Extrapolate CL & CD penalties to “in nature” mean icing condition 

Mean 

Ice 

tunnel 

Mean 

Nature 

Penalty 

sensitivity 

CL CD 

T -10°C -5°C 0.92 2.3 

LWC 0.4 0.25 0.90 1.6 

MVD 20µm 15µm 0.93 1.7 

t 20min 360min 0.5 >6 

t largest impact! 

Table. Typical “in nature” ice parameters vs aero penalties 

See extra slides for more info 
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Main findings 

1. Measured mean and distribution “in nature” for T, LWC and MVD 

have small effect to lift & drag = power curve, NOT CRITICALLY 

IMPORTANT! -> OK to use long-term averages 

 

2. Icing kills the aerodynamics very quickly, < 15 minutes 

Icing can be simplified in being on/off (start-stop) criteria! 

 

3. Icing duration t has by far the largest impact of lift and drag = 

power curve, VERY IMPORTANT! 

 

Simply put: Long-term icing for wind energy can be assessed 

by icing duration only  

And this can be done with… 
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Wind Power Icing Atlas 

 
 Is an icing database based on long-term +20yrs of measurements and 

observations from meteorological stations globally 

To answer: How large are yearly variations of icing? 

 +4000 stations globally and increasing 

To answer: Where are the icing risks likely to happen? 

 Method: Low level clouds + low temperatures = icing <-> IEA Ice Class 

Simple & robust method: Ice detected as on/off criteria 

 

Estimate next 20yrs iced production losses! 

Ave=3 

IEA 
ice 

class 

Duration of 
Meteorological 

icing 
[% of year] 

Duration of 
Instrumental 

icing 
[% of year] 

Production 
loss 

[% of AEP] 

5 >10 >20 >20 

4 5-10 10-30 10-25 
3 3-5 6-15 3*-12** 
2 0.5-3 1-9 0.5-5 
1 0-0.5 <1.5 0-0.5 

*: not stop turbine with iced blades 

**: stop turbine with iced blades 
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Wind Power Icing Atlas 

-Main Benefits- 

 Main benefits before and during site assessment:  

1. Unique, EARLY site IEA ice classification to  

a) design proper measurement campaign to increase data 

availability and quality and 

b) quantify financial risks based on +20 years of historical 

observation data 

 

2. Inexpensive and fast delivery of results  

Now results as quickly as in 1-2 weeks 

 Future goal: online, immediate answer eg mobile app 

 

Currently sold as ice assessment service 

More detailed WiceAtlas validation and example case, see [23] 

 

IEA 
ice 

class 

Duration of 
Meteorological 

icing 
[% of year] 

Duration of 
Instrumental 

icing 
[% of year] 

Production 
loss 

[% of AEP] 

5 >10 >20 >20 

4 5-10 10-30 10-25 
3 3-5 6-15 3*-12** 
2 0.5-3 1-9 0.5-5 
1 0-0.5 <1.5 0-0.5 

*: not stop turbine with iced blades 

**: stop turbine with iced blades 
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Conclusions 

 For turbine aerodynamics: icing duration most effect to CL & CD 

penalties -> output power 

 

 Key for ice mapping: Large yearly icing variations need to be assessed! 

 

 Typical 1-2yr site resource (ice) assessment NOT able to see large 

yearly variations for next 20yrs -> BIG AEP ESTIMATE UNCERTAINTY! 

 

 Simple & robust ice mapping: VTT’s Wind Power Icing Atlas (WIceAtlas) 
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Key takeaway 

Keep in mind LWC and MVD as additional icing information 

    

BUT 

 

Focus on icing duration! 
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Extra slides 
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Results 

-Icing sensitivity to aerodynamics- 

 Vary 1 parameter at a time (others constant), look at CL & CD penalties 

 Extrapolate CL & CD penalties to “in nature” mean icing condition 
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Wind Power Icing Atlas (WIceAtlas) 

WIceAtlas will tell the -€€€ effects for power production! [24] 

WIceAtlas 
+20yrs of observations 

+4000 stations 


