

Case study of Lidar in cold climate and complex terrain in Canada

Results of the 2012-2013 measurement campaign in Rivière-au-Renard (Québec) Canada

Presented by: Matthew Wadham-Gagnon

At Winterwind 2014

Cédric Arbez, TechnoCentre éolien Mathieu Boquet, Léosphère Raghu Krishnamurthy, Léosphère

Topics

- Objectives of the measurement campaign
- Infrastructure used for the study
 - Met mast MMV2 126 m height & Lidar Léosphère Wincube v2
- Measurement campaign
 - Site description, acquisition period, QC, Communications features
- Performance of the Lidar in CC & complex terrain
- Data availability of the Lidar in Cold Climate & complex terrain
 - Recovery rate of the Lidar & Long term analysis
- Recommendations
- Future projects

Objectives of the measurement campaign

- Verify the long term data availability of the Lidar in complex terrain and cold climate;
- Gain insight into LiDAR bias in complex terrain;
- Continue the previous measurement campaign done in 2011-2012 at Anse-a-Valleau presented at CanWEA

Abstract			Objectives
A WINDCUBE® v2 LiDAR was sited in an operating complex terrain in harsh cold climate. Following wort simulations using MeteoDyn WT were used to investig level of complex terrain bias observed. Encouraging n of CFD in helping with LiDARs siting in complex terrain	wind farm in vegetated k presented in [1], flow ate and confirm the low esults indicate potential h.	 Gain insight into Li Evaluate in-house bias; and Investigate efficacy 	DAR bias in complex terrain; algorithm and MeteoDyn's LIDAR module to predict of CFD in proper siting of LIDAR in complex terrain.
Met	hodology		
Experimental Data:			
A WINDCUBE®NZ LIDAR was sited on a 2.5m high (Fig. 1) located in a operating wind farm in a densely in Gaspe peninsula. Quebec, Canada. The UDAR was valiable from this ongoing campaign but for this stud (agl) were compared between 16/02 and 28/03. Modeling LIDAR Behaviour in Complex Terrain:	n platform approximately forested area in complex to s commissioned on 7 Jan. y, only data at 80 m (Lid	79 m South-West of an errain and harsh winter of 2011. Several measure ar) and 79 m (mast) ab	80-m met maat onditions (Fig. 1: Teopgraphic Map.
It was previously shown [1] that despite terrain complex measurements (Fig. 2). In the work presented here, L linear MeteoDyn WT 4.2 CFD tool. First, LDAR bias LIDAR module and an in-house algorithm [2]. Then, sp predicted by MeteoDyn at LIDAR and met mast loca "corrected" LIDAR measurements with mast measurem	city no significant bias exis JDAR bias & spatial flow correction was investigati- atial flow variability was in dions. Finally, the overall tents.	ted between the met ma variability were estimate ad using both the commi- vestigated by comparing CFD predictions were in	st and the LIDAR d using the non- ercial MeteoDyn speed-up ratios used to compare
CFD Simulation Parameters:			1
Based on conclusions of [1], new MeteoDyn simulation	ons were performed on a	2.5 km x 2.5 km doma	n with a nominal
spatial separation. On-site relative height surveys sho vertically. However, as depicted in Fig. 2, measuremen meters entailed wind speed uncertainties well within a maps. Results and D	wed that precision of digit the showed that at about 8 measurement uncertainty Discussion	tal maps was no better 1 0 agl, vertical uncertaint limits, hence validating	hat a few meters es of up to a for the use of digital Fig. 2: Lider (76 m & 80 m) vs. mat (70 Conclusions
Data Analysis & CFD Modeling: Overail analysis of LIDARImast speed-up ratios in [1] suggested limited complex termin (LDAR bias & spatial flow variability) effects. Further sector-wise analysis of massaver ratios in F(2) continue small massaver displaysing (LDAR) bias (LDAR) bias (CDD simulations remained within measurements uncertainty levels for most sectors where encogin data samples were available and notably for wind sectors between 240 ° and 300°. Beyond, significant differences between CFD and measurements were observed (Fp. 3). Using the CFD-calculated bias ratios, LDAR time series were i) cornected for complex-terrain bias and location.	$\label{eq:constraints} \begin{array}{c} \hline \\ \hline $	Measure define Measure define Measure define Measure de la construit Measure d	 Despite terrain complexity, measurements she negligible bias on LDAR data. CPG biandatona provide comparable and reliably optimistic with modeling LDAR behavior in the complexity of the sharing of the shar
	In Fig. 4, deviations fro indicate shortcomings specific directions. Ov schemes show compare table embedded in Fig. 4 slopes are close to unity are schemes to their	im the ideal unit value of the CFD model in erall, the two tested ble performances. The shows that regression (no bias) and R ² values	Electronics The advices would like to advantige Carter Whet Energy to prove advantise to the advantise of Obush to providing acces on transition through Program (ed.), LDMP Validation in Complex Tensin EVER AD ()) Defauter, Pagnan et al., LDMP Validation in Complex Tensin EVER AD ()) Defauter, Pagnan et al., LDMP Validation in Complex Tensin EVER AD ()) Defauter, Pagnan et al., LDMP Validation in Complex Tensin EVER AD ()) Defauter, Pagnan et al., LDMP Validation in Complex Tensin ()) Defauter (),

Lidar Measurement in Complex Terrain under

TechnoCentre éolien (TCE)

The state of the s

SNEEC

• Two 2.05 MW Repower MM92 CCV

- Commissioned March 2010
- Icing & complex terrain
- R&D, technological transfer, technological validation, performance assessment.

Description	Value	
Number of wind turbines	2	
Model	REpower MM92 CCV	
Rated power / Wind turbine	2.05 MW	
Frequency	60 Hz	
Rotation speed	7.8 – 15 RPM	
Start-up speed	3 m/s (10.8 km/h)	
Shut-down speed	24 m/s (86.4 km/h)	

IEC wind class: 2 Annual average wind speed: 7.9 m/s Topography: Complex site with high turbulence, near the sea Temperature: -30°C to +30°C Ice conditions: Up to 40 mm of ice

Infrastructure used for the study – MMV2

Met masts name	MMV2
Height (a.g.l.)	126 m
Altitude (at the base)	325 m
Tower type	Tripod permanent guyed wire CSA S37-01
Location	Rivière-au-Renard (QC)

Sensors installed over 15 levels:

- 8 anemometers (heat/unheat)
- 5 wind vanes (heat/unheat)
- 5 thermometers
- 4 differential temperature probes
- Vertical anemometer
- Ceilometer
- Barometer
- Pyranometer
- Hygrometer
- Ice meter (detector)

Real-time data storage with Osisoft-PI

Introduction- Topographical layout SNEEC

The second

Infrastructure used for the study –

WindCube Lidar v2 & acquisition period

TechnoCentre

Infrastructure used for the study

and the second

11 levels of measured provided from LIDAR: -40 m -55 m -76 m -80 m -100 m -103 m -126 m -140 m -160 m -180 m -200 m

Measurement campaign – data acquisition

Measurement campaign –QC

Quality control with more than 32 tests covering:

- 1- Functionnal check
 - 2- Area check
 - 3- Trend check
- 4- Cross comparison check

5- Status notification including special meteorologic detection (ex: icing, low temperature, no cloud)

Measurement campaign – site description

Characteristics	Units	Comments
Lowest temperature	-26,15 C	Site conform to GL Technical note 069
Highest wind speed	31,5 m/s	During the measurement campaign
Snow accumulation	1 meter height	
Remote area	At 7 km from the nearest village	Low CNR measured during the winter

Performance of the Lidar in CC & complex terrain

13

Performance of the Lidar in CC & complex terrain

R ² table	Allseasons	Summer	Winter
		Junner	Winter
34 m	0,9848	0,9843	0,9836
80 m	0,9869	0,9883	0,9842
126 m	0,9848	0,9951	0,9932

All correlation overestimated lightly the wind compare to the met mast

(slope of relation around 1,003 to 1,04)

and a state

Height (m)	< 30%	30 to 70 %	> 70%
40	33,0%	7,9%	59,1%
55	33,9%	7,3%	58,8%
76	32,2%	7,7%	60,1%
80	31,7%	7,9%	60,5%
100	31,2%	8,6%	60,2%
103	31,5%	8,6%	59,9%
126	34,7%	8,3%	57,0%
140	35,7%	8,1%	56,2%
160	39,5%	8,3%	52,3%
180	45,8%	8,1%	46,1%
200	59,6%	8,2%	32,2%

When did the Lidar lose data?

ALL DATE OF

But, what represents the low availability due to clear sky compared to all the clear sky occurences?

Data availability of Lidar-long term analysis

Did this lost of availability affect the long term wind speed bias?

Data availability of Lidar-long term analysis

- Turbulence intensity bins

Recommandations

- Using the Lidar following the IEC61400-12-2 (in completion of met mast) is good practice
- The Lidar has a very good correlation with met mast in complex terrain and cold climate
 - In remote areas (when aerosols are less present), check the general visibilty or status from the nearest long term met station. (~1/3 rule)

Future work

- Public report with all the results of the current campaign
- Improve the data availability of the Lidar during clear sky occurrences (or high visilibility) for remote areas
- Measure the wake effect of wind turbine in complex terrain with the Lidar (see zone lidar)

Cédric Arbez, Eng.

Project lead carbez@eolien.qc.ca

70, rue Bolduc, Gaspé (Québec) G4X 1G2 Canada Tél. : +1 418 368-6162 x237

Nos principaux partenaires / Our principal partners

The state

Développement économique Canada pour les régions du Québec

References

- [1] M. Pelletier, D. Faghani, M. Boquet, R. Dexter, B. Boucher, E. Osler, C. Masson and L. Landberg ,"Lidar Validation in Complex Terrain, presented at *EWEC*, Brussels, March 2011
- [2] Integrated Environmental Data LCC (2011, July), "Recommended Practices for the Use of Sodar in Wind Energy Resource Assessment", [Online] 1-20, Available: http://www.iedat.com/documents/SODARRecommendedPractices IEARevised13Jul2011.pdf
- [3] C.Arbez, H.Ibrahim, "Highest meteorological station in Canada designed for cold climate and complex terrain recognition", presented at *Winterwind*, Skefelltea (Sweden), February 2012.
- [4] *GL Wind-Technical Note 067 Certification of Wind Turbines for Extreme Temperatures (here: Cold Climate)*, GL Standard, Revision 2, 2005
- [5] PI product [Online] Available on www.osisoft.com
- [6] Ian Baring-Gould, et al., Expert Group Study on Recommended Practices for Wind Energy Projects in Cold Climates. IEA Wind Recommended practices no. 13. 2012. [Online] Available at: http://arcticwind.vtt.fi/
- [7] *IEC 61400-12-1- Wind turbines Part 12-1: Power performance measurement of electricity producing wind turbines,* 1st edition, 2005-12.
- [8] Wind energy handbook
- [9] QC procedure from TCE, PRO-REC-003
- [10] Users guide Léosphère

