

Risk of structural damage due to wind and icing

Modelling extreme weather loads

Bjørn Egil K. Nygaard Kjeller Vindteknikk bjorn.nygaard@vindteknikk.no

Freezing rain in Slovenia, February 2014

- Entire country covered with ice
- 25 % without power
- 50 % of the forest is damaged
- Costs 35 million euro every day

Power transmission in cold climate

- 420 kV line in Norway
- January 2014

- Design weather loads extreme values
- Return periods selected according to required reliability
- Transmission lines 150 yr return periods
- Reference ice loads not included in construction standards

Extreme weather and wind power projects

- Measurements/data
- Masts/instrumentation
- Power grid connection
- Safety issue

Remember! Icing = Meteorological icing + Object

Downscaled weather data

- WRF model with input from ECMWF (global model)
- Horizontal grid resolution of 6 km x 6 km
- Hourly data for 1979 2014
- Additional high resolution runs (0.5 1 km resolution)

Three types of atmospheric icing

• Rime icing

• Wet snow

Freezing rain

Frequency? Expected extreme values Combined with wind?

Modelling wet snow accretion

- Estimated based on the WRF output
 - Precipitation rate, wind speed, temperature, humidity, liquid water in snow
- Model calibrated with observations from Iceland

Modelling rime icing

- Estimated based on the WRF output
 - LWC, droplet concentration, wind speed, temperature and humidity.
- Several ongoing verification projects
 - E.g. test spans at Newfoundland (Nalcor Energy)

WRF 6 km

WRF 6 km

WRF 6 km. Wind force

Estimating return values

Estimating design weather loads

Line direction				Return period			
	2 yr	3 yr	5 yr	10 yr	20 yr	50 yr	150 yr*
N-S	2.0	2.4	3.1	4.3	6.5	8.8	11.0
SW-NE	1.8	2.2	2.8	3.9	5.9	8.2	10.3
W-E	1.7	2.0	2.5	3.3	4.7	6.0	7.5
NW-SE	2.0	2.3	2.9	3.6	4.9	6.1	7.6
Independent	2.4	2.9	3.6	4.8	6.8	8.7	10.9

Wet snow load (kg/m)

Rime ice loads (kg/m) vs. height a.s.l.

Height	Return period								
	3 yr	10 yr	50 yr	150 yr					
950 m	3.9	5.2	7.5	9.4					
900 m	2.3	3.5	6.3	9.0					
850 m	1.2	2.0	3.6	5.0					
800 m	0.8	1.2	2.0	2.5					

Icemap for Ireland

- Made for the Irish power grid industry
- Wet snow accretion and rime icing
- 50 years return values
- 500m x 500m grid resolution
- Will be included in the Irish standard

Bjørn Egil Nygaard bjorn.nygaard@vindteknikk.no