Wind turbine icing weather and power forecast algorithm assessments in Scandinavia

Frank McDonough Dendrite Weather Consultants

Talk overview

- Scandinavia wind farm
- Data sets (one month)
 - Power (% farm capacity)
 - Camera Observations
 - Weather Observations
 - Algorithm power forecasts
- 4 events analyzed
 - 2 icing
 - 1 stand still
 - 1 recovery
- Each case
 - Observed Power and Wind
 - Weather and Icing observations
 - Algorithm Power predictions

Icing and Power Loss Algorithms

- 3 power loss algorithms tested
 - Input:
 - Numerical weather prediction models
 - Observations
 - Output:
 - Atmospheric Variables (Wind, T, RH, LWC, pressure, density)
 - Associated iced and non-iced power predictions

Camera Images

Non-iced Power Calculation

Derived Power Curve

Calculate farm mean wind speed (W) from Nacelle anemometers

Calculate non-iced farm power from (W) and derived curve QuickTime[™] and a decompressor are needed to see this picture.

Wind farm observed power and non-iced power

1st lcing period

1st icing period weather set up

1st Icing Period (winds and power)

Camera observations -1st icing period

Just before 1st icing event

Just after 1st icing event

Turbines after 1st icing period

Algorithm Power Forecasts for 1st icing period

All 3 algorithms seem to have lower predicted power than the non-iced power.

2nd Icing period

2st icing period

2nd Icing Period Plymouth State Weather Center

2nd Icing Period (winds and power)

Winds 2012121512 to 2012121803

Camera Observations of 2nd icing event

34 hour loop - covers: Dec 16, 2012 1700 UTC – Dec 18, 2012 0300 UTC

Turbines at end of 2nd icing period

Algorithm Power Forecasts for 2nd icing event

Algo 1 suggests icing on turbines but does not reduce power to 0 Algo 2 iced too early, later reduced power predicted but not enough Algo 3 initially too high but reduces power to 0 later in period

Stop period

stop period

Full stop period (winds and power)

Camera Images

Heavy Ice on all structures Additional icing over period

Algorithm Power Forecasts for stop event

Algo 1 does good job but sheds ice a little to quickly Algo 2 sheds ice to quickly Algo 3 matches the observations well

Recover period

Recover period

🕻 Plymouth State Weather Center 🐧

Recovery period (winds and power)

Date.Time

20121229.1200

20121228.1200

20121227.1200

Camera images at time of recovery

Recovery period (winds and power)

Algo 1 starts turbines a bit early but does an excellent job later in period Algo 2 does not have enough ice Algo 3 starts turbines correctly but is a little low with the power

Algorithm Power Forecasts month

Summary

- Severe icing month analyzed
- Southeast winds associated with 2 icing events
- Icing clearly visible from camera observations
- Very difficult problem for algorithms
 - identify icing conditions
 - identify ice accretion/shedding from turbines
- Power predictions from 3 algorithms tested and compared to truth
- Algorithms show skill in predicting iced power

Thank You

Frank McDonough Dendrite Weather Consultants Boulder, CO USA frankmcdonough.wx@gmail.com