

Evaluation of field tests of different ice measurement methods for wind power

Focusing on their usability for wind farm site assessment and finding production losses Confidentiality - None (C1)

2014/02/04

Evaluation of field tests of different ice measurement methods for wind power Helena Wickman | 2014.02.04

Evaluation of field tests of different ice measurement methods for wind power Helena Wickman | 2014.02.04

JE

VATTENFALL 😂

AGENDA

- Background
- Objective
- Terminology
- Method
- Results and Discussion
- Conclusions
- Questions

BACKGROUND

Favorable wind recourses in many clod climate (cc) regions but...

- Wind power in cc can lead to:
 - Loss of energy production
 - Production stop
 - Fatigue loadings
 - Ice throws
 - Increased noise
- Important to include ice in site assessment
 - Modeling
 - Measurement

Urgent need for ice detectors adapted for wind power!

OBJECTIVE

- Increase the understanding of the detectors' abilities and limitations
- Compere the ice detectors' performances with each other
- See if it is possible to use the data for:
 - Site assessment
 - Predicting production loss during operation

TERMINOLOGY

- Meteorological icing periods
- Instrumental icing periods
- Production loss periods

METHOD

Given:

• Detector installations

Data processing:

- Data cleaning
- Data characteristics

Finding concurrent indications:

- Meteorological icing
- Instrumental icing
- Production loss

Finding explanations

- Met mast camera
- Temperature
- Wind speed
- Wind directions

METHOD

Given:

• Detector installations

Data processing:

- Data cleaning
- Data characteristics

Finding concurrent indications:

- Meteorological icing
- Instrumental icing
- Production loss

Finding explanations

- Met mast camera
- Temperature
- Wind speed
- Wind directions

METHOD

Given:

• Detector installations

Data processing:

- Data cleaning
- Data characteristics

Finding concurrent indications:

- Meteorological icing
- Instrumental icing
- Production loss

Finding explanations

- Met mast camera
- Temperature
- Wind speed
- Wind directions

RESULTS & DISCUSSION

Concurrent indications:

- Instrumental icing
 Possible
- Meteorological icing Hard
- Production loss
 Very hard

Thies/NRG, 28 549 samples Thies/Vaisala, 24 333 samples IceMonitor, 26 694, samples

21 700 samples

O mm ice

16 % amplitude decrease= same level as fog

A typical ice free situation?

106 days...

LID: 31 days

IceMonitor: 55 days

Goodrich: 15 days

HoloOptics: 106 days

CONCLUSION

- None of the detectors perform satisfactory
- Instrumental icing periods can be found with reasonable precision
- Metrological icing periods are difficult to find
- Production loss periods are very difficult to find

But...the test area suffers from very sever ice events ...

- All detectors show ok result for less extreme ice events, especially Goodrich and LID
- BUT...comparing 10min timestamps might not be the best method

- It would be interesting to test the detectors in a less harsh icing climate
- Install the detectors on a heated boom and keep the boom free from other equipment

Usability:

Predicting production loss during operation NO

Site assessment MAYBE

Welcome to Vattenfall's exhibition stand! & helena@meventus.com

Evaluation of field tests of different ice measurement methods for wind power | Helena Wickman | 2014.02.04