

Assessing energy production gains in icing conditions when utilizing de-icing equipped wind turbines under different operational modes

Ben Martinez, Vattenfall R&D

Winterwind conference, Sundsvall, 2014.02.11

Confidentiality - None (C1)

1 | Winterwind conference | Ben Martinez | 2014.02.11

Background

- Since 2011, Vattenfall coordinates an internal R&D program in Icing (TIP Program)
 - Ice detection & measurements
 - Mitigation technologies
 - O&M adaption to cold climate
 - Modelling
 - Health & Safety (ice throw risk)
- 6 Master thesis, 1 PhD (started this January)
- Ultimate goal: Gain knowledge / expertise for proper development of Wind Energy in Cold Climate
- Modelling → Assessment of site specific production losses due to icing
 - Develop in-house competence that supports project related decision making

Motivation

 In-house expertise with regards to production loss assessment in non de-icing equipped WT's via state-of-the-art methodology [1]:

 But Vattenfall plans to build wind farms in the Northern Part of Sweden where de / anti-icing systems will be needed
Next step is to work towards a site specific production loss assessment methodology when deploying de / anti-icing equipped WT's

Challenges

- Relatively new technology with low penetration
 - scarce data sets from where to build engineering models from
- Losses will highly depend on:
 - the control system
 - efficiency of the ice detection system
- Very site dependant
- Wide variety of systems on the market

4 | Winterwind conference | Ben Martinez | 2014.02.11

Modelling de-icing systems

Despite the apparent difficulties:

• The behavior of de-icing systems can be approximated by slightly modifying the state-of-the-art methodology [1] for assessing losses

- Based on previous methodology \rightarrow accumulates its uncertainties
- No data \rightarrow deterministic model
- Efficiency of de-icing = $100 \% \rightarrow$ Lower limit of production losses
- De-icing time is fixed & system running at nominal power
- Considers 100% efficient ice detectors (no false alarms)
- Can be tuned easily to on-site data

An reasonable order of magnitude of the energy gains due to these systems can be computed easily

5 | Winterwind conference | Ben Martinez | 2014.02.11

Confidentiality - None (C1)

[1] Wind power in cold climates. Ice mapping methods. Elforst report, March 2013

Modelling de-icing systems

• 2 Operational modes are considered & modelled:

6 | Winterwind conference | Ben Martinez | 2014.02.11 Confidentiality - None (C1)

Modelling de-icing systems: OP1

7 | Winterwind conference | Ben Martinez | 2014.02.11

Confidentiality - None (C1)

Modelling de-icing systems: OP2

8 | Winterwind conference | Ben Martinez | 2014.02.11

Confidentiality - None (C1)

Ice event example

^{9 |} Winterwind conference | Ben Martinez | 2014.02.11

Confidentiality - None (C1)

Model tests at the Stor-Rotliden Wind Farm

- Focusing on a single winter season
- Sentitivity tests comparing OP1 and OP2:
 - 1. 2 threshold curves (ice detection system \rightarrow A: sensible, B: conservative)
 - 2. 2 de-icing nominal powers (35kW & 100kW)
 - 3. 2 de-icing times (1h & 2h)

10 | Winterwind conference | Ben Martinez | 2014.02.11 Confidentiality - None (C1)

Results

 Using 35kW or 100kW de-icing energy per blade barely changes results

• Gains in the order of 0.5% of winter production are expected when de-icing 1h instead of 2h

• Differences between OP1 and OP2 are higher (up to 2% of winter production) when using a sensible ice detection system (threshold A)

• When operating in OP2 mode, a conservative ice detection system gives less losses (up to 0.5%)

Uncertainties

- Methodology hightly dependant on empirical production loss model
- Considers 100% efficient de-icing system & ice detection system (no false alarms)
 - \rightarrow Lower limit to production losses
- Still the blade is not modelled ...
- Limit for deterministic modelling??

Conclusions

- New method gives reasonable estimates / order of magnitude of the gains in production when using de-icing systems
- Simple to implement and fast to run
- Threshold curve to be tuned with on-site data
- Validation pending...

THANK YOU FOR YOUR ATTENTION !

14 | Winterwind conference | Ben Martinez | 2014.02.11 Confidentiality - None (C1)

