Validation of Icing and Power Predictions for the O2 Wind Pilot Program

Ben C. Bernstein

Leading Edge Atmospherics

PRESENTED BY FRANK McDONOUGH

O2 Wind Pilot Program

- Outstanding project
- Real & Planned Wind Farm Sites
 - Across Sweden
 - Heavily Instrumented
 - Measure Icing & related parameters
 - Icing load, Temperature, visibility, etc.
 - Web cam imagery
 - POWER DATA from several sites
 - All available in REAL-TIME
- Four meteorology teams
 - Generate diagnoses & forecasts
 - Icing, Power and <u>POWER LOSS</u> due to icing

Assessment: First Seasons

- Four meteorology teams
 - Four unique methods
 - Plotting, validation
 - Different colors, scales, even fields
 - Self assessment
 - Plots, statistics
- One Reference Group
 - Assess quality
 - Versus observations
 - each other
 - Very difficult job
 - Especially given differences

Standards Needed

- Difficult to compare
 - Output with observations
 - One team to another
- Need standards!
- Better Plotting
 - Make comparisons easier
- To validate, we must:
 - Define ground truth
 - Icing, Power Loss
 - Objectively, subjectively
 - Derive methods
 - Fair, consistent

Icing – OBJECTIVE Ground Truth

Datasets:

- Icing load
 - Changes over time
 - Hourly, 3-hourly
- Temp, visibility
 - Alternative: T, ceiling
- Temp, glaciations (Holooptics)
- Wind speed differences
 - Mast vs. Turbine

Result:

- Hour-by-hour icing likelihood
 - Floating point values
 - Apply thresholds to say icing = "yes" or "no"

Icing - SUBJECTIVE Ground Truth

- Manual Inspection
 - Hour-by-hour
 - Ice presence
 - Active ice growth
- Same measurements
- Web cam imagery
 - Every 20 min
 - Animate
- MORE RELIABLE
- Some ambiguity
 - Thin glaze
 - Partially iced camera
 - Moonlight
- Supporting obs helpful

Power Loss - Objective Ground Truth

• Datasets:

- Turbine-measured
 - Power
 - Winds
 - Use power curve
 - Derive expected clean power
 - Loss(%)
 - = 100% x ([expected-observed]/expected)
 - Threshold loss percentage
 - Get POWER LOSS = "yes" or "no"

Power Loss - Objective Ground Truth

Datasets:

- Minimum thresholds
 - Expected power
 - Need adequate wind speed
 - To get meaningful results
 - Above cut-in range
 - Is POWER LOSS > 25% of max power?

- If YES, then POWER LOSS = "YES"
- This is just one possible method
 - Certainly others can be used (and have been used)

Reference Group Plots - The Dream

Reference Group Plots – Reality

Complicated, powerful. Results depend on interpretation

Predicted Icing (Active, Inactive)
Observed – Manual
dLoad/dt – Version1
dLoad/dt – Version2
Temperature/visibility
Temperature/glaciations
Anemometer degradation

CAN ADD OBSERVED POWER LOSS

Comparable

<u>Verification – Stats, Plots</u>

Results depend on station, location and period of test

Summary – Part 1

- Compare systems, observations
 - Same data
 - Same methods
 - Same plots
- Verification data
 - Limited, flawed
 - STILL VERY USEFUL!
- A lot has been gained through standardization

Summary – Part 2

- Results
 - Complicated!
 - Output is quite similar
 - There are significant differences
 - Site to site
 - Parameter chosen
 - Temp, Wind Speed, Load, Power, Loss
 - Statistic chosen
 - PODyes, PODno (Probability of catching "yes" and "no" events)
 - FAR (False Alarm Rate), CSI (Critical Success Index), TSS

Summary – Part 3

- There is **NO ABSOLUTE "TRUTH"**
 - No one answer tells the story
- What field/measure is most important to you?
 - Depends person, requirement, etc.
 - POWER LOSS often most critical
 - Other measures are important, too
 - Learn WHY the power loss forecasts <u>succeed *and* fail</u>
- Each of the 4 systems "wins" some of the time
 - Each has it's strengths and weaknesses
 - Through verification, we can all learn and improve

Thank You!

Ben C. Bernstein
Leading Edge Atmospherics
ben@icingweather.com