National Center for Atmospheric Research Research Applications Laboratory

Winter Wind Energy Research at NCAR

Sue Ellen Haupt

Winterwind

Sundsvall, Sweden

February 11, 2014

What is the US National Center for Atmospheric Research (NCAR)?

- NCAR is a Federally funded research and development center sponsored by the National Science Foundation.
- NCAR is operated by the University Corporation for Atmospheric Research (UCAR), a non-profit corporation.
- UCAR has 1400 employees and ~\$250M budget.
- Research is conducted on weather and climate modeling, renewable energy, thunderstorms, hurricanes, icing, turbulence, societal impacts of weather, air chemistry, solar physics, etc.

NCAR, Boulder, CO

Wind Energy Research

\Icing Research

Greg Thompson Bjorn-Egil Nygaard (Oslo Univ) Marcia Politovich Frank McDonough

Xcel Energy Wind Prediction Project

About Xcel Energy

3.4 million customers annual revenue \$11B

Needs for Wind Power Forecasting Systems

 Wind Power Forecasting is necessary for effective grid integration

- Day Ahead forecasting Energy Trading
- Short-term forecasting Grid Integration
 & Stabilization

 Thus, an effective forecasting system should include components for both

Optimizing Prediction Methods by Blending Technologies

Copyright 2014 University Corporation for Atmospheric Research

Xcel Energy Variable Energy Forecasting System

WRF RTFDDA Model Domains

Deterministic System

 $D1 = 30 \text{ km} \qquad 0-72 \text{ hrs} \\ D2 = 10 \text{ km} \qquad 0-72 \text{ hrs} \\ D3 = 3.3 \text{ km} \qquad 0-24 \text{ hrs} \\ \end{array}$

Ensemble System (30 members)

 $D1 = 30 \text{ km} \quad 0-48 \text{ hrs}$ $D2 = 10 \text{ km} \quad 0-48 \text{ hrs}$

<u>Vary:</u>

- Multi-models
- Lateral B.Cs.
- Model Physics
- External forcing

41 vertical levels

Yubao Liu

Real Time Four Dimensional Data Assimilation

DICast Integrator System

Model Optimization via Dynamic Weighting and Bias Removal

Empirical Power Conversion Curves

Not Straightforward!

Gerry Wiener

VG Forecast Value for Xcel Energy

	Forecasted MAE		Total	Percentage	Total Savings
	2009	2012	Improvement	Improvement	(\$000,000)
PSCo	18.0%	12.2%	5.8%	32.4%	\$11.6
NSP	15.7%	9.7%	6.0%	38.1%	\$9.0
SPS	16.3%	13.5%	2.9%	17.5%	\$1.2
Xcel	16.8%	11.5%	5.4%	31.9%	\$21.8

Drake Bartlett, Xcel

But there can be some interesting

occurrences ...

48 hr forecast – run Mon 03 Feb 2014

A prior Case in Colorado: January 30 – February 2, 2011

Two Colorado Wind Farms with heavy icingCan we data mine to see it?What caused it?

Jan 28: two days prior

Turbine type 1

31 Jan 2011

1 Feb 2011

2 Feb 2011

Turbine Type 1

Turbine Type 2

* Numbers in red represent the number of data points in each rectangle

Jan 30

Feb 02

Case study: Freezing drizzle icing Jan 31, 2011

Arctic high moving south

Upslope flow across the western High Plains leading to freezing drizzle

2 layer cloud present, CTT of both layers ~ -8C

Case study: Freezing drizzle icing Jan 31, 2011

Forecast and observed power radically different, goes to zero at 12-UTC on Jan 31, 2011

Freezing drizzle observed in area at 12-UTC

WRF Enhancements

- Thompson & Eidhammer (2013) aerosol-aware microphysics (in Spring 2014 release)
 - explicit CCN activation
 - predicted cloud droplet concentration
- 3D prognostic aerosols from GOGART 7-yr simulation

Icing diagnosis – Makkonen, 2000

- Ground/structural icing
 - LWC = cloud + rain
 - Joint distribution MVD -> Efficiency
 - dM/dt = E * LWC*V*A
 - Use max dM/dt at any level < 200m
- Wind turbine icing
 - As above, but V is speed of turbine blade at 75% length
- Wet snow accumulation
 - As above, but
 - LWC = snow content
 - V = 1 m/s (veloc of falling snow)
 - E = f(T_wet, wind speed)

31 Jan – 2 Feb, 2011

Ground Structures

Wind Turbines

Real-time run with Purdue-Lin microphysics

1 10 80 100 1000 g m^{-g} h⁻¹

10 50 100 1000 g m⁻⁶ h⁻¹

NCAR's lcing/snow system

Scientists: Dan Adriaansen/Marcia Politovich Engineer: Paul Prestopnik

Three major impacts

Icing/freezing precip & fog

Modified FIP - Forecast Icing Potential

- •What is the approximate size of the drops?
 - Difficult
- How much LWC is present?
 - Modified adiabatic assumption
- Is there a warm nose present? How deep?
 - T profile
- What is the temperature at the top of the cloud layer?
 - T profile
- How deep is the cloud layer?
 - Model RH
- What is the cloud base height?
 - Model RH/other

lcing/snow system

Based on new Thompson WRF wet snow algorithm

- Examine antecedent T at hub height
- Assess probability of snow
- Tw

DICast: model data

Dicast: 0-12 hr

- 6111 = [Twet MaxT @ sfc] [hourly Twet] [Low cloud (layer?) CTT]
- 6112 = [Twet corrected for station pressure/elevation]
- 6113 = Temperature only
- 6114 = Combination of the categorical prob of FZRA @ sfc and IP @ sfc

Dicast: 12-72 hr

- 6111 = [Twet MaxT @ sfc] [hourly Twet] [Low cloud (layer?) CTT]
- 6112 = [Twet corrected for station pressure/elevation]
- 6113 = Temperature only
- 6114 = Combination of the categorical prob of FZRA @ sfc and IP @ sfc

Hazard: Turbine icing 06 Oct 2012

18Z 03 October 2012 - 18Z 06 October 2012

DiCast site: KSNY (Sidney, NE METAR station), NWS forecast zone: Colorado zone 48

PANEL 1 (TOP):

- Red = DiCast temperature forecast (C)
- Green = DiCast T_D forecast (C)
- Blue = DiCast RH forecast (right axis, %)
- Orange shading: 12 hour period indicating mention of FREEZING DRIZZLE by NWS
 PANEL 2 (MID):
 - Lines = DiCast categorical probability of precipitation forecast (%). Red = ice, green = rain, blue = snow, black = fog
 - •Orange shading: 12 hour period indicating mention of FREEZING DRIZZLE by NWS

PANEL 3 (BOT):

- Red line = Icing event metric.
- •Combines observed power, expected power based on the wind speed (from manufacturer power curve), and wind speed at each turbine to assess likelihood of icing . farm average.
- Black dashed lines = standard deviation of icing event metric. Farm average.

Wind Turbine Performance Degradation Due To Atmospheric Icing

Sven Schmitz, Assistant Professor Jose Palacios, Assistant Associate sus52@engr.psu.edu and jlp324@engr.psu.edu

NCAR-XCEL-PSU

The Vertical Lift Research Center of Excellence

Adverse Environment Rotor Test Stand (AERTS) Facility

$$-Re_{lcing} = 1.5 - 2.4 \times 10^6$$

Ice Molding and Casting Techniques

- Material: RTV silicone rubber and Urethane liquid plastic
- Curing time: 24hr (Molding) / 15 min. (Casting)

Wind Tunnel Testing Configuration

• PSU Low-speed Wind Tunnel

- Test section size: 36 in. (h) × 24 in. (w)
- Max. Speed 150 ft/s;
- Test speed 130 ft/s;
- Turbulence Intensity (Ti) 0.22%;

Wind Tunnel Measurement

- Wake survey using hot wire probe: Cd
- 6-axis external force balance: Cd, Cl, Cm

Testing Airfoil

- Airfoil size: 24 in. (span) × 21 in. (chord)
- Re = 1.4×10^{6}
- Multiple pieces of ice casting models from the same icing condition

Scaling Conditions – DU-93-210 Test Blade

- The experimental blade chord is 1:2 scale
- Results when scaling icing conditions from real to experimental:
 - Roughly 1:2 scale for MVD
 - A small increase in LWC
 - A large increase in local blade velocity
 - A large decrease in icing event time
- Scaling Conditions represented on the next page

Scaling Test Points

Real Test Points									
LWC (g/m ³)	MVD	T (°C)	Velocity (m/s)	Time (min)	Chord (cm)				
0.44	27	-3	41.4	45	145				
0.22	20	-15	41.4	45	145				
0.22	25	-12	41.4	45	145				
0.22	30	-10	41.4	45	145				
0.23	33.5	-5	41.4	45	145				
0.4	20	-10	41.4	45	145				
Scaled Test Points									
LWC (g/m ³)	MVD	T (°C)	Velocity (m/s)	Time (min)	Chord (cm)				
0.449	15.4	-3.2	58.55	15.6	72.5				
0.255	11.4	-15.2	58.55	13.73	72.5				
0.253	14.2	-12.2	58.55	13.88	72.5				
0.25	17.1	-10.2	58.55	14	72.5				
0.251	19.1	-5.2	58.55	14.61	72.5				
0.458	11.4	-10.2	58.55	13.9	72.5				

The Vertical Lift Research Center of Excellence

Icing Envelope and Test Points

• Display of suggested and actual test points

Continous Icing Envelopes

The Vertical Lift Research Center of Excellence

Testing Process

- 1. LWC measurements taken and validated for various conditions in the AERTS facility
- 2. Ice shapes generated using scaled test conditions
- 3. Ice shapes molded for preservation
- 4. Molded ice shapes mounted to "carrier airfoil"
- 5. Lift and drag coefficients of accreted ice shapes measured in the wind tunnel

Testing Photos

- Ice Shapes are compared to LEWICE predictions for validation
- Ability to create large variations in ice shapes

Testing Photos

• Glaze Ice – 0.45 LWC, 18 MVD, -3° C

Testing Photos

• Rime Ice – 0.21 LWC, 17 MVD, -11° C

Molding Photos

 Ice Shapes molded to preserve shape for wind tunnel testing

Example Wind Tunnel Expt

Summary

- Xcel Energy has seen power loss due to icing and wet snow in all systems
- Data Mining can distinguish events
- Experiments can provide insight
- New systems to forecast events

- WRF w/ new Thompson microphysics
- Modified FIP
- Real-time forecasting

Copyright 2014 University Corporation for Atmospheric Research

Thank You !

Dr. Sue Ellen Haupt haupt@ucar.edu www.ral.ucar.edu

Collaborators include: Branko Kosovic Marcia Politovich **Dan Adrianson Greg Thompson Sven Schmitz Jose Palacios** Cory Wolff Yubao Liu **Gerry Wiener** Will Cheng Laura Imbler Seth Linden Paul Prestopnik **Julia Pearson** Frank McDonough