

Business from technology

Recommended practices for wind energy in cold climates – resource assessment and site classification

Winterwind 2013, 12-13 February, Östersund, Sweden

Tomas Wallenius (VTT, FI), René Cattin (Meteotest, CH), Göran Ronsten (WindREN, SE), Michael Durstewitz (IWES, DE), Ian Baring-Gould (NREL, US), Øyvind Byrkjedal (Kjeller Vindteknik, NO), Esa Peltola (VTT, FI), Andreas Krenn (Energiewerkstatt, AT), Matthew Wadham-Gagnon (Technocentre éolien, CA), Niels-Erik Clausen (DTU, DK), Adriána Hudecz (DTU, DK), Rebecka Klintström (Vattenfall, SE), Zhang Qiying (United Power, CN)

2

Content

- IEA Wind R,D&D Task 19 Wind Energy in Cold Climates
- Resource assessment in cold climates
- IEA Ice Classification for wind energy sites
- Summary

IEA Wind R,D&D Task 19 – Wind Energy in Cold Climates

- IEA Wind R,D&D a vehicle for collaboration
- Research tasks with expert groups for problems defined by IEA Wind Executive committee
- Task 19 Wind Energy in Cold Climates
 - New 3 year term started January 2013
 - Web site: <u>http://arcticwind.vtt.fi</u>
 - Countries (likely) participating:

Why icing conditions should be taken into account?

- Reduced energy yield
- Increased component fatigue loading
- Risk of ice throw
- Increased noise emissions

Measurement system for resource assessment

- High quality equipment and materials
- Properly designed* measurement mast
- Wind measurements

iea wind

- First class anemometers for ice free periods
- Properly heated anemometers for icing periods
- Properly heated mounting booms
- Recommended_level of icing measurements
 - Meteorological icing e.g. camera or icing sensor.
 - Instrumental (component) icing e.g. one properly heated and one unheated anemometer.
- Site assessment gives invaluable information about energy yield, component fatigue loading, ice throw and noise emissions.

IEA Ice Classification for wind energy sites

 IEA Ice Classification classifies a site with respect to total duration of either

Meteorological icing

or

Instrumental icing (a.k.a. component icing)

IEA Ice Classification for wind energy sites

IEA Ice class	Meteorological icing	Instrumental icing	Production loss
	% of year	% of year	% of annual production
5	>10	>20	> 20
4	5-10	10-30	10-25
3	3-5	6-15	3-12
2	0.5-3	1-9	0.5-5
1	0-0.5	<1.5	0 - 0.5

- Instrumental icing in IEA Ice Classification is defined as the duration when an unheated standard cup anemometer is disturbed by ice.
- Input to new IEC61400-1 ed4

Detailed resource assessment

- Wind conditions
 - Identify icing periods
 - Aim for a conservative estimate
 - Be aware of increased uncertainty due to reduced data availability
- Production loss estimation
 - Total duration of icing
 - Correlate icing events with wind speed and direction
- Ice throw risk assessment

iea wind

- Total duration of icing
- Correlate icing events with wind speed and direction

Choosing wind turbine technology

- Based on resource assessment, define if the site belongs to
 - Low Temperature Climate and/or
 - Icing Climate
- Low temperature package for the turbine
 - Suitable materials but also
 - Operation adjusted to low temperatures
- Anti- or de-icing if economically feasible or local regulations requires

10

Operation and maintenance in cold climate sites

- Maintenance should be done when weather is favourable
 - Conditions monitoring and preventing maintenance
 - Weather forecasting
- Minimize risk of ice throw
 - Reduce the amount of ice
 - Warning signs
 - Curtail turbine operation
 - Stop turbine if necessary

11

Summary

- Cold Climate wind energy potential is exploitable with adequate measures:
 - Careful site assessment, including icing conditions
 - Adapted technology for wind turbines
 - Anti- and de-icing systems,
 - Low temperature materials,
 - Adapted operation and control

Minimize the risk of ice throw

Recommended practices for wind energy projects in cold climates

Available at http://arcticwind.vtt.fi/

VTT creates business from technology

iea wind