Mesoscale modelling of icing climate: Sensitivity to model and model setup

Stefan Söderberg⁽¹⁾, Magnus Baltscheffsky⁽¹⁾, Hans Bergström⁽²⁾, Petra Thorsson⁽²⁾, Per Undén⁽³⁾, Esbjörn Olsson⁽³⁾ ⁽¹⁾WeatherTech Scandinavia AB, ⁽²⁾ Uppsala University, ⁽³⁾ SMHI

WeatherTech

Vindforsk V-313, Wind power in cold climates

- develop methods for estimating the icing climate and production losses due to icing.

Tools:

- Observations

wind speed, temperature, ice load, wind farm data

- Ice load model ISO 12494:2001 – Atmospheric icing on structures
- Mesoscale models: WRF, COAMPS[®] (US Navy), AROME (e.g., SMHI), different forcings, microphysics, and PBL schemes

Observations

11 sites, 3 winter seasons: telecommunication masts, met towers, and wind turbines.

Ice measuring devices

Ice accretion model

A modified version of the "Makkonen model"

 $\frac{dM}{dt} = \alpha_1 \alpha_2 \alpha_3 w * A * \vec{V} - melt - subl$

Assume a rotating cylinder Growth $-\alpha_1$ collision efficiency - α₂sticking efficiency $-\alpha_3$ accretion efficiency - wAV water flux Melting when $T > 0 \circ C$ - energy balance Sublimation when $T < 0 \circ C$ - transition from ice to vapour dM/dt = F(wind, temperature, pressure, LWC, droplet size distribution)

Numerical experiment setup

Initial and lateral boundary conditions:

i) NCEP Final Analysis (FNL from GFS)
ii) ERA Interim
iii) NCEP/NCAR Reanalysis

Vertical grid configuration:

- 11 levels in the lowest 300 m

Horizontal grid configuration:

nested grids
 Outer nest: 27 x 27 km²
 3:1 nest ratio
 Innermost nest: 1 x 1 km²

Example of model domains

Model results – pressure

Large scale weather systems captured in a similar way in all three models

Model results – temperature

Differences found during cold periods and in March.

Differences in temperature close to 0 °C have a strong influence on the ice load.

Model evaluation – brief summary

- Standard meteorological variables (wind, temperature, pressure) are well captured by all three models (AROME, COAMPS[®], WRF).
- In the upcoming Vindforsk report statistics for all sites are given.

Why so many models?

It is important to understand:

- A model is a model, not a perfect description of the real world. Each model has its strengths and weaknesses.
- A modern weather forecast model should be viewed as a model system.
- The results depend not only on choice of model but also on model setup.

Modelled ice load – 3 models

Modelled ice load – 3 models

Number of hours with active icing, ice growth > 10 g/h

	2010/2011	2011/2012
AROME	138	337
COAMPS	290	641
WRF	389	604

Not the same model that gives the largest number of hours with active icing over the two seasons.

WRF sensitivity study

	Full name	Category	Description
FNL	GFS Final analysis	Forcing	Final analysis of GFS operational forecast
ERA	ERA Interim	Forcing	Re-analysis produced by ECMWF
NCAR	NCEP/NCAR	Forcing	Re-analysis produced by NCEP/NCAR
WSM3	WRF Single-Moment 3-class	Microphysics	Simple, efficient scheme with ice and snow processes
WSM6	WRF Single-Moment 6-class	Microphysics	A scheme with ice, snow and graupel processes
Morr	Morrison 2-moment	Microphysics	Prognostic mixing ratio for 6 classes and double-moment ice, snow, rain and graupel
MYJ	Mellor-Yamada-Janjic	PBL	Eta operational scheme. Prognostic turbulent kinetic energy scheme with local vertical mixing
QNSE	Quasi-Normal Scale Elimination	PBL	A TKE-prediction option that uses a new theory for stably stratified regions
MYNN2	Mellor-Yamada Nakanishi and Niino Level 3	PBL	Predicts TKE and other second-moment terms.

WRF sensitivity study

			Surface		Land		
	Microphysics	PBL	layer	Radiation	surface	Cumulus	Forcing
				RRTM+		Kain-	
FNL	Thompson	YSU	Eta-MM5	Dudhia	Noah	Fritsch	FNL
ERA	-	-	-	-	-	-	ERA
							NCEP/
NCAR	-	-	-	-	-	-	NCAR
wsm3	WSM3	-	-	-	-	-	-
wsm6	WSM6	-	-	-	-	-	-
Morr	Morrison	-	-	-	-	-	-
myj	-	MYJ					
qnse	-	QNSE					
mynn2	-	MYNN2					

Modelled ice load – forcing

Number of hours with active icing, ice growth > 10 g/h

	2010/2011
FNL	389
ERA	379
NCAR	337

Modelled ice load – microphysics

Modelled ice load – PBL

Number of hours with active icing, ice growth > 10 g/h

	2010/2011
FNL(YSU)	389
MYJ	585
QNSE	781
MYNN2	455

Modelled ice load – WRF spread

Modelled ice load – AROME, COAMPS, WRF spread

Ice load – AROME, COAMPS, WRF spread, obs

Active icing – AROME, COAMPS, WRF spread

Winterwind 2013 - Östersund

455

MYNN2

Conclusions

- Modelling ice load is not straight forward. The end result depend on which model that is used and how the model is set up.
- Measuring ice is not trivial. State of the art instruments are not accurate enough.
- => On a scientific level we cannot say which model and model setup that is "the best".

But (don't despair!)

- The timing of the icing events are quite well captured.
- A newly developed power loss model have shown promising results (Magnus Baltscheffsky at 10.30 tomorrow).