GL Garrad Hassan

An investigation into turbine performance and wind flow modelling under cold weather driven stable atmospheric conditions

Winterwind 2013 (Östersund, Sweden - 13 February 2013)

www.gl-garradhassan.com

GL Garrad Hassan – Independent Renewable Experts

Almost 1000 staff, in 44 locations, across 26 countries

Content

Cold climate driven stable atmospheric conditions in the Nordic Region:

- 1 Consequences to the wind flow (challenges) and how it translates
- 2 How complex CFD flow modelling can help with the wind flow modelling challenges
- 3 Impact of high frequency of stable atmospheric conditions on turbine performance

1-2-3

Stable atmospheric conditions What is it and how it translates

- Unstable, neutral, stable and very stable atmospheric conditions

- High frequency of stable atmospheric conditions

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

- When do stable and very stable atmospheric conditions happen in the Nordic region

High frequency of stable atmosphere and wind conditions

Wind Flow modelling challenges

Wind speed at mast A/Wind speed at mast B = Speedup

Complex CFD flow modelling for stable wind flow challenges

What is CFD (Computational Fluid Dynamics)

- Most accurate description of wind flow: Navier-Stokes Equations (below)
- Very difficult to solve!

- Linear models simplify this equation some accuracy is sacrificed
- CFD makes fewer changes less loss of accuracy:
 - Reynolds-Average Navier-Stokes (RANS)
 - Advanced software required
 - Modern computing power required
 - Like a wind tunnel on your computer

Wind Flow modelling under stable conditions

Stable + Neutral CFD approach (GL GH approach)

Directional speedup errors (95 mast pairs at 16 sites)

1-2-3 High frequency of stable conditions and turbine performance

GL

Performance of wind turbines under stable conditions in the Nordic Region – What the theory suggests

Results for IEC Power Curve Measurements of 5 mast/turbine pairs in Sweden

Results for IEC Power Curve Measurements of 5 mast/turbine pairs in Sweden

Results for IEC Power Curve Measurements of 5 mast/turbine pairs in Sweden

Data cleaned for partial icing and filtered excluding temperatures below 0°C and different site calibration speedups applied for stable and unstable conditions

Results for IEC Power Curve Measurements of 5 mast/turbine pairs in Sweden

Conclusions

- There is high frequency of stable and very stable atmospheric conditions in sites across the Nordic Region caused by radiative cooling
- This presents a challenge for both wind flow modelling and turbine performance
- Stable CFD reduces the error in wind flow modelling at these sites
- Theory shows that low turbulence reduces turbine performance in raising part of the power curve
- Preliminary Nordic data supports this, however shows recovery in the "knee" of the power curve
- Need to gather more Power Curve Measurement data across the Nordic region
- Careful consideration should be given to winter Power Curve Measurement data, as partial icing affects more low TI data than high TI, and the anemometry used
- Site calibration speedups for stable and unstable conditions should be considered separately as suggested by the new draft of the IEC standard

Renewable energy consultants

GL Garrad Hassan

Thank you

Any questions?

Contact:

Carla Ribeiro, Senior Team Leader Nordic Region carla.ribeiro@gl-garradhassan.com

With Thanks to: Simon Cox Bob Hodgetts Andrew Tindal GL GH CFD Team GL GH AMOS Team

www.gl-garradhassan.com