

Business from technology

Pic: Bonus 600kW, Olos fjäll, Finland

Preliminary results from project lcedBlades: Input to new IEC 61400-1 ed4

WinterWind 2013 Conference, Östersund, Sweden Ville Lehtomäki¹, Kai Freudenreich², Michael Steininger²

¹VTT Technical Research Centre of Finland ²Germanischer Lloyd Renewables Certification, Hamburg, Germany

Content

- Motivation
- IcedBlades goals
- IcedBlades in revision of IEC 61400-1 "Wind turbine Design requirements" ed3->ed4
- New text proposed to IEC 61400-1ed4 about cold & icing climate
 - Ambient condition
 - Environmental conditions
 - Structural design
 - New design load cases (DLCs)
 - Site assessment
 - Control, protection, mechanical and electrical systems
- Conclusions

Motivation -Wind energy in Cold & Icing Climate (CIC)

- Currently 60 GW in CIC [3]
- Global wind energy in CIC ≈ 3 x global offshore! [5]
- NREL estimate: 50% of US wind fleet in CIC 2010-2030 [4]
- Problem of production losses caused by iced blades "well known".
- BUT no idea, how turbine lifetime is affected by iced blades.
- <u>Thesis: Premature failure of main components e.g. gearboxes &</u> towers resulting to "hidden" financial penalties BIGGER than production losses?</u>
- ULTIMATE GOAL: Increase knowledge & improve wind energy reliability in CIC

Project "IcedBlades" goals (2/2013-12/2014)

Within the project scope updated industry standard or new simulation tools for assessing wind turbine dynamic behavior in cold and icing climates.

- 1. Predicting the power losses.
- 2. Understand better the dynamic loading of iced turbine rotor.
- 3. Developing a new technical note for icing.
- 4. Input for new edition of IEC 61400-1 Ed3 \rightarrow Ed4.
- 5. Forecasting the risk of icing for single wind turbines.
- 6. Forecasting power production in icing conditions.

IcedBlades in revision of IEC 61400-1 ed3->ed4 "Wind turbine - Design requirements"

- IEC 61400-1 is the international standard for the design of onshore wind turbines [2]
- Main emphasis on turbine reliability and personal safety
- Focusses on external conditions, mechanical loads, control and protection system, site assessment
- Smaller chapters on mechanical and electrical components, material strength
- Schedule: New ed4 committee draft for voting (CDV) ready in Q1/2014

INTERNATIONAL	IEC
STANDARD	01400-
	Third editio 2005-0
Wind turbines –	
Part 1:	
Design requirements	
IFC	

New text to IEC 61400-1 about CIC* -Ambient conditions-

- Cold climate = IC and/or LTC
 - Icing Climate (IC)
 - Sites with icing events
 - Using IEA TASK 19 definition
 - Low Temperature Climate (LTC)
 - Below normal operational limits
 - Definition from GL Technical Note 067 rev4 (2011) on cold climate

Figure 1. Definition of cold climate, low temperature climate and icing climate. [3]

06/02/2013

New text to IEC 61400-1 about CIC* -Environmental conditions-

- Input from IEA TASK 19 [3]
- Meteorological and COMPONENT icing —
- Icing climate = icing classes
- Icing will be defined as icing frequency Table 1. Icing classes <u>PRELIMINARY</u>

lcing class	I	II	III
Icing time for fatigue load cases (limits for days per year)	60 (60>t≥30)	30 (30>t≥10)	0 (10>t)
A C	LTC		
в С	Normal environmental conditions		

Figure 2. Definition of meteorological icing and component icing. (modified from [3])

For example: a turbine could be wind class IIA and icing class IB = Class IIA IC IB

New text to IEC 61400-1 about CIC* -Structural design-

- Rotor blade icing shall be considered for aerodynamic changes and for the blade ice mass
- Icing frequency will be input for fatigue calculations
- Low temperatures result to low air densities

Table 2. Applied temperatures and air densities for	
standard cold climate conditions	

Temperature	Air density
$\theta_{\text{mean,year}} = 0^{\circ}C$	1.292 kg/m ³
$\theta_{\text{min operation}} = -30^{\circ}\text{C}$	1.317 kg/m ³
$\theta_{1year,min} = -40^{\circ}C$	1.317 kg/m ³

New text to IEC 61400-1 about CIC* -New design load cases-

- Major input from project IcedBlades [1]
- New DLCs (ultimate & fatigue loads):
 - New simulation parameters:
 - If IC then aerodynamic penalties for blades AND/OR
 - If LTC then increased air density (Table 1 prev. slide)
 - DLC1.6: Power production with iced blades**
 - DLC6.X: Parked (standstill or idling) with iced blades
 - DLC7.1: Parked plus fault conditions with iced blades

New text to IEC 61400-1 about CIC* -Site assessment in CIC-

- Input form IEA TASK 19 & COST 727
- Site assessment in CIC:
 - Site icing conditions need to be assessed
 - New informative annex on:
 - Guidelines for ice detection measurements
 - Calculation of rotor icing from meteorological icing with fig 3 & 4
 - Meteorological modeling

Figure 3. Icing frequency profile (scale factor set to 1 at 50m) PRELIMINARY

$$SF = e^{\left(0.0189((hh + \frac{2D}{32}) - mh)\right)}$$

D = rotor diameter [m]
hh = hub height [m]
mh = measurement height [m]

Figure 4. Transferring with a scale factor (SF) of measured active icing time to icing effecting the rotor <u>PRELIMINARY</u>

New text to IEC 61400-1 about CIC* -Site assessment in CIC-

- Average icing vertical profile can be simplified to an exponent formula (some finetuning still needed)
- Current IEC average icing profile formula close to ISO12494 formula

New text to IEC 61400-1 about CIC* -Site assessment in CIC-

- Example 1: if site long term measurements (min 1yr) at 100m above terrain level result to 100h/a of <u>active icing</u>, how much:
 - a) active icing and
 - b) component icing is at 150m?

New text to IEC 61400-1 about CIC* -Site assessment in CIC-

Transferring measured active icing time to effective rotor icing time (assuming that icing is most relevant on outer 1/3 of rotor)

$$SF = e^{\left(0.0189((hh + \frac{2D}{32}) - mh)\right)}$$

D = rotor diameter [m]
hh = hub height [m]
mh = measurement height [m]

Example 2: Long term site icing measuremets (min 1yr) at hub height (hh=mh=100m) result to 120h/a of component icing. What does this mean for a turbine of D=100m with hub height hh=100m? lcing IEC IEC class simu range Answer: component icing = rotor icing \rightarrow $SF = e^{\left(0.0189\left((100m + \frac{2 \times 100m}{6}) - 100m\right)\right)} = 1.88 \rightarrow 1.88 \times 120\frac{h}{2} = 226\frac{h}{2} \rightarrow 1.88 \times 120\frac{h}{2} = 226\frac{h}{2}$ 0-9 0 30 10-30 Ш 60 31-60

New text to IEC 61400-1 about CIC*

-Control, protection, mechanical and electrical systems-

- No existing CC standards to refer to
- CC conditions need to be considered as well for
 - effects by varying air density on wind turbine dynamics
 - safety critical energy storages, e.g. in the hub
 - sensor readings and data processing
 - start-up procedure from minimum ambient operation temperatures
 - maintain minimum oil temperature in the gearbox before power transmittion
 - appropriate materials in the electrical components
 - possible grid return after grid loss at minimum standstill temperature

Conclusions

- Demand: Huge market potential for cold & icing climate wind energy
- Problem: Uncertanties in operating with iced blades that may reduce the lifetime of main wind turbine components -> Risk: BIG financial penalties!
- Solution: Revision work of IEC 61400-1 "Wind turbine Design equirements" ed3->ed4 will have MAJOR IMPROVEMENTS IN THE RELIABILITY AND SAFETY FOR WIND TURBINES OPERATING IN COLD & ICING CLIMATE

References

[1] Lehtomäki, V. et al., *IcedBlades - Modelling of ice accretion on rotor blades in a coupled wind turbine tool,* WinterWind 2012 conference, Skellefteå, Sweden

[2] IEC 61400-1:2005 ed3, *Wind Turbines – Part 1: Design requirements,* International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland

[3] IEA WIND TASK 19, EXPERT GROUP STUDY ON RECOMMENDED PRACTICES: 13. WIND ENERGY PROJECTS IN COLD CLIMATES, 1. EDITION 2011, Approved by the Executive Committee of IEA Wind May 22, 2012.

[4] Baring-Gould, I. US Wind Market Overview, WinterWind 2011 conference, Umeå, Sweden

[5] IEA TASK 19, *WIND ENERGY IN COLD CLIMATES: Cold Climate Challenges,* EWEC 2011 conference, EWEA side event Brussels, Belgium March 16th, 2011

Thank you!

Ville Leht	omäki	
VTT Tech	nnical Research Centre of Finland, Wind Energy	
Address:	Vuorimiehentie 5, Espoo, P.O. Box 1000, FI-02044 VTT, Finland	
Phone:	+358 40 176 3147	
Fax:	+358 20 722 5888	
E-Mail:	ville.lehtomaki@vtt.fi	
Kai Freuc	denreich	14
Germanis	scher Lloyd Renewables Certification, Hamburg, Germany	1
Address:	Brooktorkai 18, 20457 Hamburg, Germany	
Phone:	+49 40 36149 7923	

Fax: +49 40 36149 1720

E-Mail: kai.freudenreich@gl-group.com