

Business from technology

Windcube Measurement Data Correction by CFD Method for Fjeld Region

Tuomas Jokela¹, Petteri Antikainen¹, Andrea Vignaroli², Fredrik Öhrvall³, Thomas Mannelqvist³ & Daniel Eriksson³ ¹VTT Technical Research Centre Of Finland ²WindSim AS & ³Skellefteå Kraft AB

Partners

Content of Presentation

- Description of Measurement Site
- Forecast of Study
- Lidar Operating Performance in Arctic Conditions
- Analysing Methods
- Results of Measurement Campaign
- CFD Based Remote Sensing Correction
- Conclusion and Future

4

Description of Measurement Site

 VTT & Skellefteå Kraft AB organized a measurement campaign at a site in Northern Sweden

Forecast of Study

Main topics of the measurement campaign:

- to monitor Windcube operating performance in arctic conditions
- to investigate the differences between Windcube & Sodar data
- to investigate the differences between Windcube vs meteomast data
- to analyse and correct the Windcube data which are biased in complex terrain with the Windsim CFD software with neutral atmospheric settings

6

Lidar Operating Performance in Arctic Conditions

Analysing Methods

- To quantify the difference between lidar & sodar and lidar & meteomast measurements in complex terrain due to the flow disuniformity
- CFD based remote sensing correction can help to minimize the biased horizontal wind speed values between Lidar & meteomast measurements
- Therefore it was important to carry out sensitivity study to find optimum simulation parameters for lidar data correction
- Five simulations with different roughness values were carried out:
 - R0.001, R0.03, R0.1, R0.5 & R1.0
 - Before using the Remote Sensing Correction Tool, we estimated which roughness value describes well snow and forest conditions

8

Results of Measurement Campaign Phase 1

9

Results of Measurement Campaign Phase 2

10

CFD Based Remote Sensing Correction

Sensitivity Study

Data Correction

	WS [m/s] Lidar 80 m vs Meteomast 81 m				
Phase2	Measured	Roughness		Corrected (Lidar)	
	Correlation	Z0 (m)	type	Correlation	
	95.2 %	0.001	Snow	91.4 %	
		0.03	↓	99.2 %	
		0.1		99.1 %	
		0.5		98.7 %	
		1.0	Forest	98.7 %	

	WS [m/s] Sodar 100 m vs Lidar 100 m			
	Measured	Lidar Corrected vs Sodar No Corr.		
Phase1	Correlation	Correlation		
	95.5 %	93.5 %		

- ° Phase 2: volume measurement (vectors) vs point measurement (scalars)
- ° Phase 1: volume measurement (laser) vs volume measurement (sound)

11

Conclusion and Future

Based on this case study our first conclusion is:

- The Lidar campaign completed in Northern Sweden with some challenges
 - Tough deploying conditions: Lidar started tilting, due to melting snow
 - Low data availability during the winter storms
 - Lidar indicated 5 % lower values compared to the mast measurements
 - With CFD simulations it is possible to reduce the 5 % error into 1 %
- CFD software predicts a smaller correction value in Lidar vs Sodar comparison:
- \rightarrow The wind flow is more uniform on the side of the hill compared to the hilltop
- → It is important to plan where to deploy the Windcube to optimise the data quality

Future:

- It would be important to continue this case study with simulation parameters which take into account the atmospheric stability and forest modelling
- It would be also interesting to study the Lidar correction also with Wasp engineering software and see the difference between these two simulation softwares

VTT creates business from technology