

WIND ENERGY AT VTT Technologies, materials and solutions

- Focus
 - Technology to growing wind turbines for growing domestic and export markets, especially cold climate and offshore applications
- References, solutions
 - Wind energy in cold climate projects KOLAWIND, WECO, IEA Wind Task 19 - coordination
 - New blade materials and concepts (EU-projects) TIMBER, New Generation Wind Turbine Blade, OPTIMATBLADES, UPWIND
 - Ice prevention systems for wind turbine blades

- Competences
 Technology and market assessment
 - Cold climate and offshore technologies
 - Versatile modeling expertise from wind through somponents and turbines to
 - electricity
 Materials, control and expertise for future
 wind turbines
 - Field and laboratory testing facilities for wind turbine development, structural and performance measurements and verification
- International networking
 - Nordic co-operationSeveral EU-projects
 - IEA collaboration
 - · IEC standardization

Icing prevention system for the blades of wind power plants Part of the development in the (EU-project New Generation Wind Turbine Blade)

- Prevents the accumulation of ice on the blades in freezing conditions
- Icing significantly reduces generating output
- Control on the basis of an ice sensor and temperature
- Consumption of heating energy less than 3 % of the power plant's annual output
- Installed in several power plants in 600 kW to 1 MW range in Finland and abroad
- · Growing global market foreseen
- Next step: system development for multi-MW turbines

The result of collaboration between VTT Processes and Kemijoki Oy Spin off:
Kemijoki Arctic Technology Oy in 1998

This slide was made in 2002

Cold climate wind technology at VTT

- · General research related to icing
 - · Evaluation of icing risks
 - · Material research one clean surfaces
- Modelling and tools
 - TURBICE, calculation of heating demand
 - PSCAD-ADAMS-SIMULINK, performance, dynamics and loads wind turbines in icing conditions
- Wind and icing measurements in cold climate
 - Follow-up and assessment measurements
 - Ice-free anemometry, evaluation of icing
 - Power performance and loads of turbines in cold climate
 - · Performance of heating systems and ice detectors

Heating system concept development - effect of icing on the performance of a stall regulated wind turbine

Heating system concept development

- effect of icing on the performance of a variable speed pitch regulated wind turbine

10

Heating system concept development - modeling results on the effect of icing on the performance of a stall and pitch regulated wind turbines

and the consequence

7

Wind energy in cold climate esp. icing environment

- Need: ice-free solutions for 1-3 MW variable speed turbines with modern control capabilities
- Steps
 - Evaluation of wind resources and evaluation and verification of icing risks (work carried out partly within IEA Task 19)
 - Performance of wind turbines in icing conditions, verification of models
 - Technology and product development for ice free blades
 - Demonstration in sites with different conditions

V

18

