

Development of operational forecasting for icing and wind power at cold climate sites

Øyvind Byrkjedal, Johan Hansson and Henrik van der Velde oyvind.byrkjedal@vindteknikk.no

IWAIS, Uppsala, Sweden, July 1st 2015

Icing conditions

- Temperatures below freezing
- cloud or fog containing small water droplets
- Something to freeze to

in-cloud icing

How does icing influence wind energy production?

Operational forecasting

- WRF simulations at 4km x 4km resolution
- 4 times daily
- GFS 48 hour forecasts

Forecasting of icing - motivation

The aim is to know **when** icing will occur:

- Power trading
- Blade heating systems:
 - Start the heating before icing starts
 - Avoid unnecessary stops during heating
- Risks of ice throw / ice fall
 - Planning of maintainance
 - Public safety
- Monitoring of exposed power lines
 - Avoid damages

Calculation of in-cloud icing

Forecast parameters:

- Icing intensity
- Ice loads
- Ice shedding episodes
- Wind energy

dM $\alpha_1 \alpha_2 \alpha_3 \cdot w \cdot A \cdot V$ dt

According to ISO12494

Forecasting - icing intensity

Topography

The terrain is smoothed in the coarse model resolution:

- The orographic lifting of the air masses will be too small
- The coarse model will therefore underestimate the icing on hills

WRF model: 3km x 3km resolution

Terrainmodel: 50 m x 50 m resolution

Height adjustment

Height adjustment routine:

- Forced lifting of the air masses from the coarse smoothed terrain to the height in the terrain model
- Icing hours per year with 50 m x 50 m resolution.

WRF model: 3 km x 3km resolution

Validation of icing forecasts

Identification of icing from SCADA data

- Data available form four wind farms:
 - Power
 - Nacelle wind speed
 - Nacelle wind direction
 - Temperature
 - Operational state
 - 10 minute frequency
 - More than 2 years of data from each wind farm
 - Identification of icing
 - Davis et al. (2015)
 - P10 treshold curve
 - Time constraint
 - Temperature constraints

Identification of icing from SCADA data

- Icing flagged for each turbine and for the model:
 - Green: normal operation
 - Blue: icing identified
 - Red: Turbine alarm
 - Yellow: Curtailed production

Validation of instrumental icing periods

- The periods with observed instrumental icing compared to modelled periods with instrumental icing for 4 wind power sites in Sweden:
 - Site A, B, C, D
- Differences in ice shedding from model and observations

	Α	В	С	D
Ratio of time when ice is detected	22 %	9 %	10 %	13 %
Probability of detection	74 %	82 %	79 %	63 %
Probability of false alarm	6 %	7 %	6 %	5%

Validation of meteorological icing - Timing

67 %

70 %

70 % of the observed icing episodes starts when the model indicates meteorological icing

Probability of detection

71 %

70 %

Energy forecasts for wind power

IceLoss - Forecasting of power losses

Estimating production loss

VINDTEKNIK

Modelled vs observed production losses

Forecasting of power production

• **Bias and mean absolute error** (MAE) in the forecasts are **reduced** when we include production losses due to icing

Forecasting of power

- Reduced number of cases with overprediction of power production in the forcast with icing
- Higher number of cases with error less than +/-12.5 % in the forcast with icing
- Higher number of cases with underprediction of the power production in the forecast with icing

Summary

- We carry out forecasting of icing and energy production with the WRF model runniong operationally
 - Timing of icing periods are well modelled
 - The IceLoss model improves the energy forecasts
- Future work:
 - More realistic energy forecast by calulating icing on the turbine blade instead of a ISO cylinder
 - Validation of LWC contents
 - Continuos work on the modelling of ice accreation will continue in the projects FRonTLINES and WISLINE funded by the Norwegian Research Council and Statnett.

Thank you for your attention!

 Øyvind Byrkjedal oyvind.byrkjedal@vindteknikk.no

