

Comparison of measured and simulated icing in 28 test spans during a severe icing episode

Árni Jón Elíasson - Landsnet Hálfdán Ágústsson - Belgingur Guðmundur Hannesson - EFLA Egill Thorsteins - EFLA

IWAIS XIV, Uppsala, June 2015

Scope of study

- Extreme in-cloud ice accretion for 99 days (23 Dec. 2013 to 2 March 2014) during an anomalous flow situation.
- Detailed and accurate measurements of ice loads in 28 test spans at 19 locations.
- Unique data and opportunity to analyze the performance of coupled ice accretion and atmospheric models.

Meteorological network and orography

Weather stations marked in blue

Test spans in red

Northwest

Northeast

100 metre contours

Profiles for test spans - Northwest

Profiles for test spans - Northeast

Profiles for test spans - Northeast

Test spans - Observational uncertainty

- Ice load is calculated based on measurements of the tension load in a conductor.
- Influence of wind must be filtered from the data.
- Estimated icing depends on the load distribution.
- Calibration of load cell affects the accuracy and the max loads that can be measured.

Atmospheric model setup

- Atmospheric data is created with the WRF-model at **1 km**.
- Initial and forcing data from the ECMWF.
- Thompson moisture physics scheme and ETA boundary layer scheme.
- Continuous simulation for 99 days, Dec. 2013 Mar. 2014.
- Model results are interpolated upwards to correct orography elevation.

Accretion model setup

- Cylindrical icing model based on actual span direction.
- Rime (in-cloud) icing as well as freezing drizzle/rain.
- MVD based on a droplet number Nd=50 cm³.
- Ice shedding simultaneous with observations.
- Separate accounts of simulated accretion concurrent with observed icing, as well as when no accretion is observed.
- Comparison at individual spans and aggregated over spans

Accretion model setup - Ice shedding

- The stochastic nature of ice shedding is hard to parameterize.
 - → Melting
 - → Sublimation
 - Mechanical ice break
- Differential ice shedding may lead to large biases in simulations.
- Accretion model is forced to shed ice simultaneously with the observations.

Test site 00-1 Náttmálahæðir in Northwest-Iceland

6 February 2014

8 April 2014

Test site 83-1-A : Measured and modelled icing in span at Hallormsstaðaháls

Test site 94-2-A : Measured and modelled icing in span at Ufs 500 Icing Model Measured 400 Wire Total accretion: break Measured: 556 N/m Ice load [N/m] 200 200 Icing Model: 623 N/m 100 0 12.12.13 02.12.13 22.12.13 01.01.14 21.01.14 31.01.14 20.02.14 02.03.14 12.03.14 10.02.14 11.01.14

Observed and simulated maximum ice load during period

Observed and simulated total accumulation during period

Total observed and simulated accumulation at 28 spans

Concluding remarks

- Detailed and accurate observations of extreme accretion for 99 days.
- Novel analysis of observed and simulated ice loads.
- Forced shedding and accumulated accretion.

- Loads on average well reproduced.
- Timing well captured.
- Largest errors due to:
 - → complex orography,
 - → atmospheric data.

['eIja,fjatla,jœ:kYt]]