Advanced test methods for full-scale ice tests of DC insulators strings intended for ±350 kV

A. Dernfalk¹

J. Lundengård¹

E. Petersson¹

I. Gutman¹

K. Tucker ²

S. Banerjee ³

¹ STRI (Sweden), ² Nalcor (Canada), ³ Kinetrics (Canada)

Background

Verification of insulator design

Laboratory full scale withstand voltage tests

- Pollution & Rime ice
- Pollution & Glaze ice
- Pollution & Glaze ice accreted under voltage

Different severities (pollution and ice)

Pollution

- IEC 61245, dipping
- SDD: 0,05-0,15 mg/cm²
- NSDD: 0,1 mg/cm²
- Dried before mounted

Ice accretion setup

Ice accretion

- Fixed ambient temperature (-7 - 8 °C)
- Low water temperature
- Limited amount of water
- Variable sweeping interval/speed
- Types of nozzles
- Distance from nozzles

Preserve pollution!

Characterization

Measured parameters

- Test hall temperature
- Applied water conductivity
- Ice density
- Melting ice water conductivity (at voltage test)
- Melted ice water volume
- DC test voltage
- Leakage current
- Ice temperature (IR)

Example ice accretion – no voltage

Example ice accretion – @ 361 kVDC

Withstand voltage test

- Melting regime (sun-rise service case)
- Maximum service voltage (361 kVDC)
- 4 parallel test objects
- Acceptance criteria acc. to IEC

Summary

Verification of <u>pollution and ice</u> performance of full scale <u>350 kV HVDC</u> glass strings under three service cases:

- Pollution and rime ice
- Pollution and glaze ice
- Pollution and glaze ice <u>accreted under voltage</u>