IEA Wind Task 19 – Key results from 2016-2018 Future plans 2019-2021

INTERNATIONAL WIND ENERGY CONFERENCE

Ville Lehtomäki, Operating Agent on behalf of Task 19 René Cattin, Meteotest/CH

Umeå, Sweden- February 5-6, 2019

3 questions about IEA Wind Task 19

What is it?

What are the latest key deliverables? What are the future plans?

3 questions about IEA Wind Task 19

What is it?

What are the latest key deliverables? What are the future plans?

The birth of IEA Wind Task 19

1st meeting in Risoe 2001

Göran Ronsten, Lars Tallhaug, Per Lundsager Markus Geissmann, Hannele Holttinen

IEA Task 19 having fun

«Prison Meeting» Umeå 2011

René Cattin, Timo Laakso

Göran Ronsten, Lars Tallhaug

Andi Krenn, Michael Durstewitz, Tomas Wallenius

Miro Hulkkonen, Ian Baring Gould

Tang Jian Hui, Adriána Hudecz, Antoine Lacroix

The secret meaning of IEA

International Eating Association

Rolv Bredesen
Tse Kim
Matt Gagnon
PJ Jordaens
Jenny Longworth
Carla Ribeiro

Øyvind Byrkjedal Göran Ronsten Andreas Krenn René Cattin Dag Haaheim Ville Lehtomäki

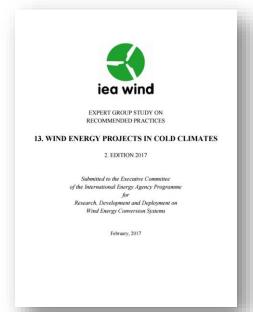
What is IEA Wind Task 19?

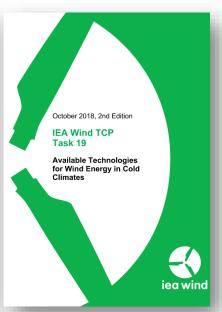
- Task 19 Wind Energy in Cold Climates international expert group
- Mission: Boost safe and cost efficient wind power deployment in cold climates
- Activities included:
 - Exchange information on international research collaborations and projects
 - Create recommendations, guidelines & best practices
 - Collect overview of available technologies and market potential
 - Disseminate reports, tools and findings
 - No research projects!
- Task active since 2001
- New term 2019-2021 has just started!
- Funded through participating countries

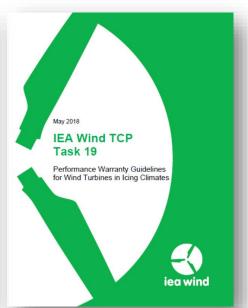
3 questions about IEA Wind Task 19

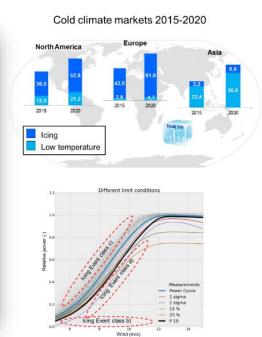
What is it?

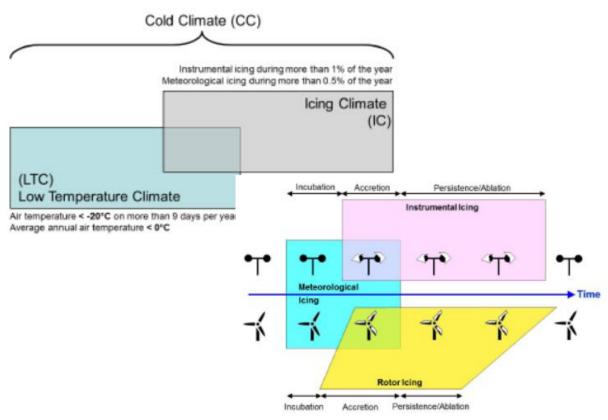
What are the latest key deliverables?


What are the future plans?


Current portfolio 2016-2018




- 1. Recommended Practices report (Feb2017)
- 2. <u>Available Technologies</u> report (2nd ed, Oct2018)
- 3. Recommendations for Ice Throw Risk Assessment report (Oct2018)
- 4. <u>Performance Warranty Guidelines for wind turbines in icing climates</u> report (May2018)
- 5. Global Cold Climate Market study 2015-2020 here (Jul2016)
- T19IceLossMethod v2.0 free software (download <u>here</u>)


1. Recommended Practices report

Target Audience

Developers, owners, operators, banks

- "The Golden Standard for planning, executing and operating cold climate wind power projects."
- Minimize risks, more bankable projects, same language for all
- Short, easy to read!

IEA Ice class	Meteorological icing	Instrumental icing	Icing loss
	% of year	% of year	% of gross annual production
5	>10	>20	> 20
4	5-10	10-30	10-25
3	3-5	6-15	3-12
2	0.5-3	1-9	0.5-5
1	0-0.5	<1.5	0 - 0.5

2. Available Technologies report

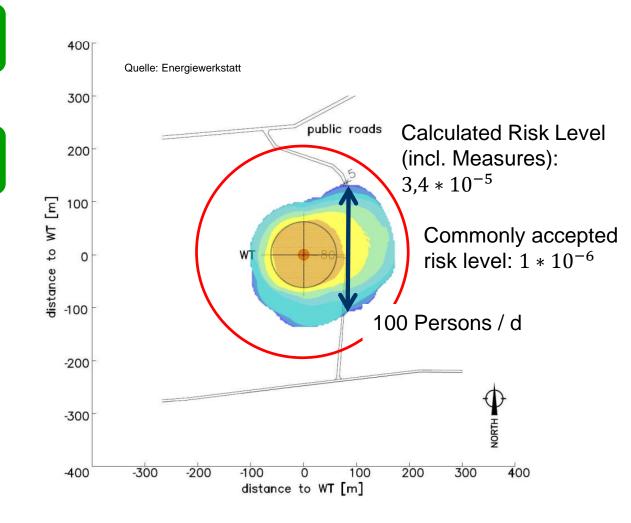
Target Audience

Engineers, scientists, analysts

- "Find your solution in 3min from summary tables!"
- List of most cold climate solutions in one document
- Over 400 references divided into
 - Scientific papers: trusted info
 - Performance: how good is it?
 - Other: basic info, specs

Table 7 - Ice detector technologies for mast or nacelle application

Detector manufacturer	Technical description	Applications	References			
Holo Optics T40 series	Uses the reflection of an infrared signal to detect	Meteorological icing:	x	Paper: Perf.: [58] [59] [60] [61] [62] [63] [64] [65] Other: [66]		
	ice on a vertical cylinder probe. Probe is heated	Instrumental icing:				
	when ice is detected until	Icing rate:	X			
	signal is back to normal.	Icing severity:				
		Turbine control:				
Combitech IceMonitor	Measures the weight of ice load on a freely	Meteorological icing:	x	Paper: Perf.: [58] [59]		
(ISO Cylinder)	rotating vertical cylinder according to ISO 12494	Instrumental icing:	x	[60] [61] [62] [67] [68] [69]		
	(30 mm in diameter and	Icing rate:	x	[70] [64] [71]		
	0.5 in length).	Icing severity:	x	Other: [72] [73]		
		Turbine control:				
PMS Icemeter	Measures the weight of ice load on a fixed	Meteorological icing:	x	Paper: Perf.: [58] [60]		
	vertical cylinder downwards (30 mm in	Instrumental icing:	x	[74] [75] [76] [77] [78] [79]		
	diameter and 0.5 in	Icing rate:	x	[80] [81]		
	length).Also provides air	Icing severity:	x	Other: [82] [83]		
	temperature humidity, wind speed and direction.	Turbine control:				
Heated versus unheated		Meteorological icing:		Paper: [84] Perf.: [58] [61]		
or wind of a heated and unheated anemometer or wind		Instrumental icing:		[62] [68] [85] Other:		
vanes	vanes.	Icing rate:				
		Icing severity:		1		
		Turbine control:	x	1		
Atmospheric	Tee detection through	Meteorological	*	Paner		


3. Ice throw recommendations

Target Audience

Developers, consultants

- "Standardized ice throw risk modelling approach for planned wind farms!"
- 'Must haves' for
 - Mathematical Model
 - Relevant data set
 - Risk assessment
 - Uncertainties
- Co-creation of guideline with consultants, OEMs, certification bodies

4. Performance Warranty Guidelines

Target Audience

 Developers, operators, banks, turbine OEMs, technology companies

- Turbine Ice Protection System (IPS) (anti/de-icing) performance warranty options and testing
- Warranty tests as key enabler for even better and more reliable solutions in future!
- Co-creation of guideline with OEMs, developers, consultants

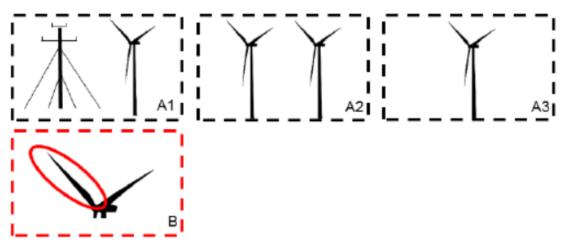
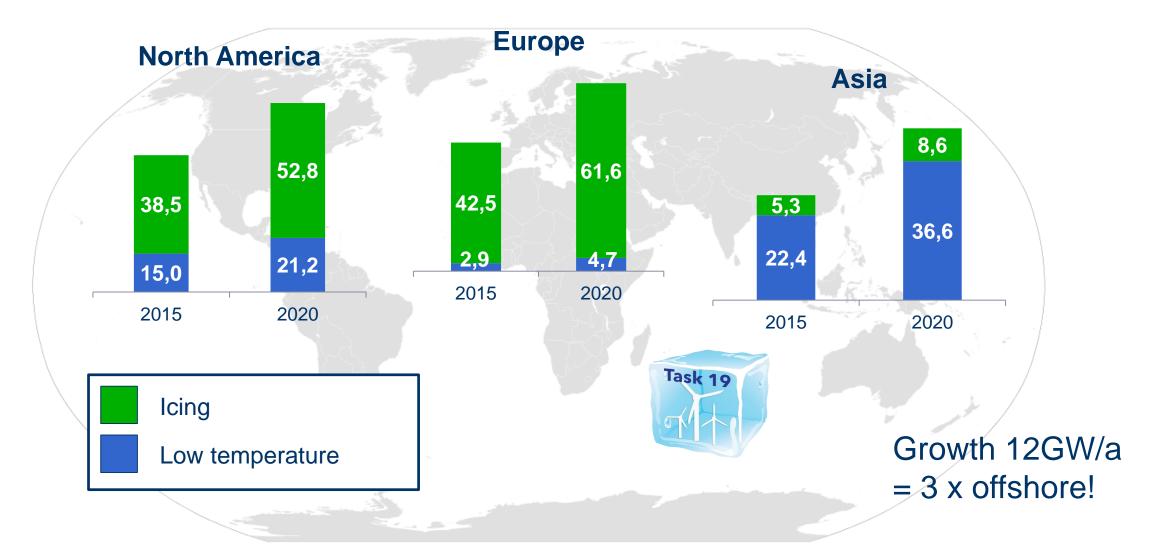
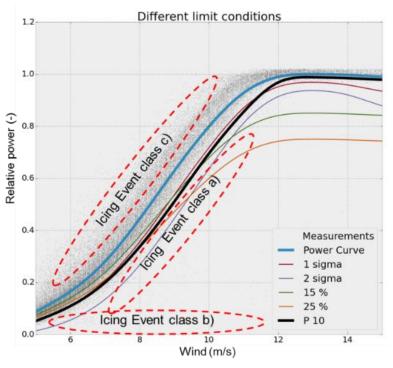



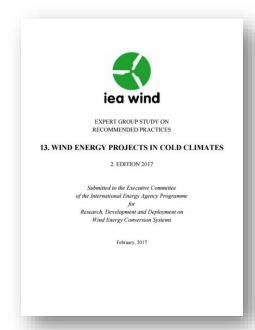
Figure 1. Overview of different full-scale turbine performance tests options (top row) and sub-component test option (bottom row)

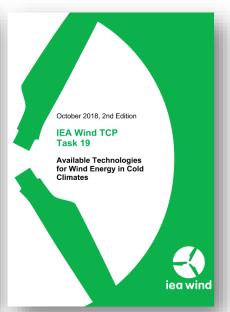
5. Global Cold Climate Market study 2015-2020 [GW]

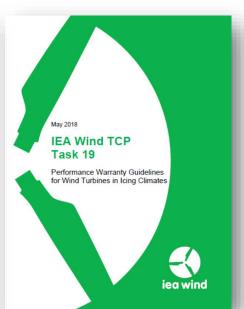

6. T19IceLossMethod v2.0 free software

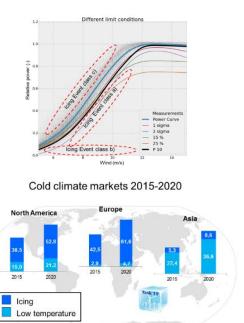
- 1. Free public software code (Python) for calculating icing losses on any SCADA dataset
- 2. Uses the rotor as an "ice detector"
- 3. Method robustness achieved by using 10th percentile of non-iced power curve
- 4. False alarms minimized by including the "memory effect" of icing: more than one 10-min datapoint needed to trigger positive rotor ice detection

Download here

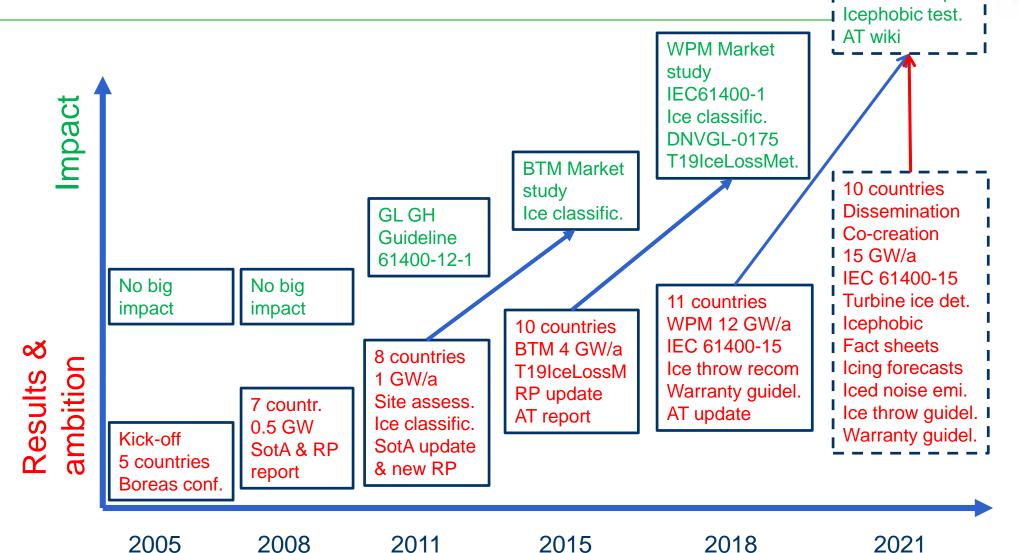



Current portfolio 2016-2018




A lot of freely available information! https://community.ieawind.org/task19/home

3 questions about IEA Wind Task 19



What is it?

What are the latest key deliverables?

What are the future plans?

Why continue?

IEC61400-15
Main stream

IPS testing Ice throw impl.

Task 19 plans for 2019-2021

<u>Same mission</u>: Boost safe and cost efficient wind power deployment in cold climates

<u>Co-creation with wind industry towards standardization</u> to new areas (turbine ice detection, icephobic coatings, icing forecasts) and strengthening of existing areas (icing losses in IEC, ice throw guidelines, warranty guidelines)

More dissemination: more impact also to non-CC experts via a) website (blogs) b) social media (Twitter, LinkedIn) c) email newsletters d) non-cc and cc conferences/events

Task 19 topics	Deployment of wind energy in cold climate	Towards standardized practices for cold climate solutions	Safety and acceptance						
Motivation	Increase industrial awareness and interest	Bringing cold climate issues in guidelines and standards	Improving safety and removing cold climate specific barriers						
	Market study update 2020-2025	Finalize work with IEC 61400-15 "Site assessment"	Ice throw guidelines: uncertainty and turbine control						
	Fact sheet: icing forecast benefits								
		T19IceLossMethod: for IPS	Iced turbine sound emissions						
	IPS & retrofit summary presentation		summary presentation						
		Performance warranty guidelines for IPS:							
Deliverables	Available Technologies wiki	testing details development							
New									
Update		turbine ice detection systems							
IPS		Best practices for testing icephobic coatings							
		Recommended Practices report & fact sheet							
		Web site, blogs							
	Email newsletter								
Dissemination		LinkedIn, Twitter							
		Workshops Free software							
Countries	ALL	Presentations at conferences ALL	AU, CH, CA, NO, SE						
- Countines			710, 011, 071, 110, 02						

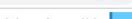
Timeline

		2019			2020				2021			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 19 meetings												
E-dissemination (blog, newsletter, LinkedIn, Twitter)	1112		1112	1011	1111	1012	2124		1112	1024	1124	
T19IceLossMethod: IPS update												
IPS & retrofits: perf. and experiences (conf pres)												
Market study update 2020-2025												
Perf. eval. guideline for wind turbine ice detect.												
2 fact sheets: icing forecast & cold climate												
IEC 61400-15 cold climate inputs												
Warranty guideline update												
Available Technologies wikisite												
Recommend Pratices report update												
Ice throw guidelines update												
Annual progress & final report												
Icephobic coating testing best practices report										•		
Iced turbine sound emission summary										•		
Mileston	es											
Deliverab	ole											
Work in Progre	ess											

N=13 deliverables!

2020 to 2021

Takeaways



<u>Task 19 Mission</u>: Boost safe and cost efficient wind power deployment in cold climates

Already a lot of excellent publications and tools for free!

We will have even <u>more ambitious and interesting publications</u> upcoming during 2019-2021, stay tuned!

https://community.ieawind.org/task19/home

IEA Wind Home Task 19 Work Plan Participants Publications T19IceLossMethod Ice Throw search

About Task 19

The international expert group IEA Wind TCP Task 19 Wind Energy in Cold Climates gathers and provides information about wind energy in cold climates. Cold Climate areas are regions where icing events or periods with temperatures below the operational limits of standard wind turbines occur, which may impact project implementation, economics and safety. The group studies a variety of topics, including: project development; operation and maintenance (O&M); health, safety and environment (HSE); operational experiences; and recent research.

The current Task 19 working period runs between 2016-2018 and covers the following themes:

Upcoming Events

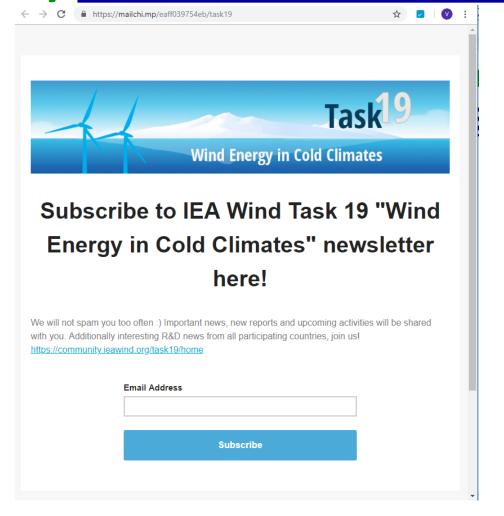
Task 19 kick-off meeting 2019-2021

Feb 6, 5:00 PM - 7:00 PM (SE) Umeå, Sweden

REGISTER

MORE

Task 19 Publications



Cold climate wind power market study update for 2015-2020 (published in WindPower Monthly magazine

International

Sign up for Task 19 newsletter today!!

- 1) via Task 19 website or
- 2) https://mailchi.mp/eaff039754eb/task19

https://twitter.com/19_iea

Soon!

Thank You!!

Ville Lehtomäki

Email:

ville.lehtomaki@vindteknikk.com

Phone: +358 50 370 7669

The IEA Wind agreement, also known as the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.

